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Do habitat and elevation promote hybridization during
secondary contact between three genetically distinct groups of
warbling vireo (Vireo gilvus)?
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Following postglacial expansion, secondary contact can occur between genetically distinct lineages. These genetic lineages may be
associated with specific habitat or environmental variables and therefore, their distributions in secondary contact could reflect such
conditions within these areas. Here we used mtDNA, microsatellite, and morphological data to study three genetically distinct
groups of warbling vireo (Vireo gilvus) and investigate the role that elevation and habitat play in their distributions. We studied two
main contact zones and within each contact zone, we examined two separate transects. Across the Great Plains contact zone, we
found that hybridization between eastern and western groups occurs along a habitat and elevational gradient, whereas
hybridization across the Rocky Mountain contact zone was not as closely associated with habitat or elevation. Hybrids in the Great
Plains contact zone were more common in transitional areas between deciduous and mixed-wood forests, and at lower elevations
(<1000 m). Hybridization patterns were similar along both Great Plains transects indicating that habitat and elevation play a role in
hybridization between distinct eastern and western genetic groups. The observed patterns suggest adaptation to different habitats,
perhaps originating during isolation in multiple Pleistocene refugia, is facilitating hybridization in areas where habitat types overlap.
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INTRODUCTION
Our understanding of the processes involved in divergence and
speciation is constantly developing (Toews et al. 2016). Hybrid
zones are of particular interest as genetically differentiated
populations come into contact and interbreed allowing us to
study a range of traits between taxa at various stages of speciation
(Barton and Hewitt 1989; Barton and Gale 1993; Brelsford and
Irwin 2009; Baldassarre et al. 2014). In North America, a number of
physiographic features correspond to hybrid zone hotspots across
taxonomic groups (Swenson and Howard 2005). Hewitt (2001)
proposed that some of these were located between or at the
edges of ice sheets during the Pleistocene (2.5 Mya), with isolated
populations later coming into secondary contact after postglacial
recolonization. The effects of past and present day climatic factors
(e.g., precipitation, temperature) and the location of these hybrid
zones have been well documented (Mettler and Spellman 2009;
Carling and Zuckerberg 2011; Schukman et al. 2011; Walsh et al.
2020).
Hybrid zones are maintained through a number of mechanisms

including extrinsic (e.g., environment) and intrinsic (pre- and post-
zygotic reproductive barriers) factors, hybrid related fitness, and
selection (Mettler and Spellman 2009; Billerman et al. 2016; Irwin
2020). Studying how extrinsic factors, like environment and
habitat, influence hybridization is important given that habitat
modifications and climate change influence hybridization (Taylor
et al. 2015; Grabenstein and Taylor 2018). The frequency of

hybridization events increases as landscape heterogeneity
decreases, especially in modified landscapes, resulting in hybridi-
zation of ecologically distinct species that would not hybridize
under normal conditions (Seehausen et al. 2008; Grabenstein and
Taylor 2018; Sartor et al. 2021). Furthermore, climate change
induced range expansion can increase the level of sympatry
between species and populations, and lead to greater rates of
hybridization (Garroway et al. 2010; Larson et al. 2019). Therefore,
examining hybridization patterns along different environmental
gradients, such as the transition from montane habitat in the
Rocky Mountains to grassland habitat found on the Great Plains,
can provide greater insight into the relationship between
environment and hybridization. These transitional areas, called
ecotones, act as hybrid zones for divergent taxa across North
America (Walsh et al. 2016; Reding et al. 2021) and elsewhere
(Culumber et al. 2012; Pavolova et al. 2013). Such hybrid zones are
“natural laboratories” (Hewitt 1988) to explore how environmental
variables may have influenced the initial divergence of these taxa,
and how their adaptation to different environmental conditions
then influences hybridization. Cryptic species, those species that
are genetically distinct but exhibit low phenotypic or morpholo-
gical divergence (Toews and Irwin 2008; Rush et al. 2009; Bradbury
et al. 2014; Hinojosa et al. 2019), offer an exceptional opportunity
to examine the impact of habitat and environment on reproduc-
tive isolation and hybridization (Coyne and Orr 2004; Chenuil et al.
2019). The absence of distinct morphological differences leads to
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questions about whether reproductive isolation is complete
between genetically distinct groups, or whether interbreeding
occurs once barriers to dispersal are removed (Chenuil et al. 2019).
Further, questions remain about whether genetic differentiation is
associated with environmental characteristics or niche divergence
(MacDonald et al. 2020).
In this study, we assess the relationship between habitat,

morphology, genetic variation, and patterns of hybridization in
three genetically distinct groups of warbling vireo (Vireo gilvus) and
their secondary contact zones in western North America (Fig. 1).
Three of the five subspecies of warbling vireo are found in this area,
including the eastern (Vireo gilvus gilvus) and two western (V. g.
swainsonii and V. g. brewsteri) subspecies that diverged during the
early Pleistocene (Hebert et al. 2004; Lovell et al. 2021; Carpenter
et al. 2021) with hybridization occurring along the Rocky Mountain
—Great Plains ecotone (Lovell et al. 2021; Carpenter et al. 2021).
Hybridization between eastern and western populations in central
Alberta may be facilitated by habitat, as the location of the narrow
hybrid zone corresponds to a transition between deciduous and
mixed forests (Lovell et al. 2021). Further to the west, Carpenter
et al. (2021) revealed genetic differentiation among western
populations with northwestern and southwestern groups, but
whether these genetic differences are associated with habitat or
elevation remains unknown. Here we test whether hybrids are more
prominent in specific forest types, and whether elevation and
habitat differences influence hybridization. Based on our previous
study of warbling vireo phylogeographic patterns (Carpenter et al.
2021), we believe that genetic variation may also be associated with
elevation differences, in addition to the habitat differences shown
by Lovell et al. (2021). We examine the effects of both elevation and
habitat to determine whether hybridization patterns are more
closely associated with one variable or both. We also examined
whether hybridization patterns differed along each of the contact
zones by examining two transects within two different areas of
secondary contact. Examining multiple transects allowed us to
better determine how prominent hybridization is among geneti-
cally distinct groups, and ascertain how hybridization may vary
across these large areas of secondary contact.

METHODS
Contact zones
Genetic patterns were analyzed across multiple contact zone transects
(Fig. 2). The Great Plains contact zone in Alberta, Montana, and
Saskatchewan is where divergent eastern and western warbling vireo
genetic lineages come into contact (Lovell et al. 2021; Carpenter et al.
2021). At the northern edge of the Great Plains in central Alberta,

deciduous forest transitions into coniferous forest (Semenchuk 1992).
Forest coverage is higher, and elevation is lower than at the southern edge
of Alberta and northern Montana where deciduous forest is sparsely
distributed among grasslands. A drastic increase in elevation occurs at the
southwestern edge of the Great Plains contact zone with a transition to the
Rocky Mountains, and where deciduous habitat is replaced by mixed and
coniferous forests. Given how variable habitat and elevation features are
across the Great Plains contact zone, we examined two separate transects
(Fig. 2A, B) to determine the effect of habitat and elevation on genetic and
morphological variation. Both of the transects in the Great Plains ran
east–west to identify the areas where eastern genotypes are replaced by
western genotypes.
In the western contact zone of the Rocky Mountains, secondary contact

occurs between northwestern and southwestern genetic groups. Genetic
differentiation is reduced relative to genetic differences between eastern
and western birds (Carpenter et al. 2021). Coniferous and mixed forests are
the dominant habitats, with deciduous forest found at lower elevations.
Elevation changes continuously across the west, with the highest peaks
found in the southwestern United States. Because of the considerable
variation in habitat and elevation, we also analyzed two separate transects
in the Rocky Mountain contact zone. One transect included birds from the
two western genetic groups sampled west of the Rocky Mountains in
British Columbia, Washington, Oregon, California, Idaho, and Nevada (Fig.
2C) and the other transect included all remaining samples from the two
western genetic groups found east of the Rocky Mountains in Utah,
Colorado, Wyoming, Montana, and Alberta (Fig. 2D). The Rocky Mountain
contact zone included 203 individuals that were used in the Great Plains
contact zone identified as having western genotypes. For the Rocky
Mountain contact zone, we addressed similar questions of how genetic
ancestry between the two western genetic groups changed across the two
transects and whether hybridization was correlated with habitat or
elevation differences. Our two Rocky Mountain transects were linear, and
ran north to south on either side of the Rocky Mountains.

Sample collection
From 2009 to 2019, we collected samples from 544 individuals within the
study area. We captured 355 adult individuals during the breeding season,
May–July, using mistnets and song playbacks. Each individual was banded
to avoid resampling, a small blood sample (<50 µL) was taken from the
brachial wing vein, and mass (g) and uncompressed wing chord length
measured to the nearest 0.1 mm were recorded. An additional 189 tissue
samples, some with corresponding morphological data, were obtained
from museum collections to supplement our field sampling (Table 1).
Samples were stored in 95% ethanol and DNA was extracted using a
modified Chelex procedure (Walsh et al. 1991; Burg and Croxall 2004).

DNA amplification
MtDNA. We developed primers targeting fixed nucleotide differences
found in the cytochrome b (cyt b) gene in six eastern (gilvus) and six
western (swainsonii) warbling vireo sequences (Carpenter et al. 2021)
(GenBank accession numbers: MZ20223-MZ20225, MZ20227-MZ20229,
MZ20254-MZ20256, MZ20258-MZ20260). Paired with the L14990 primer
(Sorenson et al. 1999), we created the H15469 Gilvus primer (5′
ACGAAGGGTAGTAGCAAA 3′) and H15634 West primer (5′ GAGAATAGGGC-
TAGGTG 3′) to assign 192 individuals to eastern or western mtDNA clades.
The 10 µL polymerase chain reaction (PCR) used 5× Green GoTaq® Flexi
buffer (Promega), 0.2 mM dNTP, 2 mM MgCl2 (Promega), 0.5 µM of each H
(H15469 Gilvus or H15634 West) and L14990 primer, and 0.5 U GoTaq®

Flexi polymerase (Promega). The following thermocycling profile was used
to amplify DNA for both H15469 Gilvus and H15634 West primers: 2 min at
94 °C, 45 s at 48 °C, 1 min at 72 °C, 37 cycles of 30 s at 94 °C, 45 s at 48 °C,
1 min at 72 °C, ending with a 5min extension at 72 °C. PCR products were
run on a 0.8% agarose gel and identified based on size; H15469 Gilvus is
~550 bp and H15634 West is ~600 bp. A positive control for both eastern
and western groups was run with each set of unknown samples for
accuracy of identification. Furthermore, a subset of samples (N= 20) of
both eastern and western birds was sent for sequencing at NanuQ (McGill
University, Montreal, QC, Canada) to confirm the reliability of these
primers.

Microsatellites. To examine the nuclear genome, we genotyped 544
individuals at 14 variable microsatellite loci: BCV2-6, BCV4-5, BCV4-6New
(Barr et al. 2007); Ck.1B5D, Ck.4B6D, Ck.2A5A, Ck.1B6G (Tarr and Fleischer
1998); Hofi5 (Hawley 2005); Pocc1 (Bensch et al. 1997); ApCo46 (Stenzler

Northwest genetic group

Southwest genetic group

East genetic group

Fig. 1 Warbling vireo genetic groups. Map showing the distribu-
tion of the three warbling vireo genetic groups based on Carpenter
et al. (2021) in areas of secondary contact in western North America.
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and Fitzpatrick 2002); Lox1 (Piertney et al. 1998); Ase18 (Richardson et al.
2003); Ppi2New (Martinez et al. 1999); and CmAAAG30 (Williams et al.
2004). PCR protocols are outlined in Carpenter et al. (2021).

Genetic analyses
We examined nuclear ancestry across both the Great Plains and Rocky
Mountain contact zones using the Bayesian clustering program STRUC-
TURE 2.3.4 (Pritchard et al. 2000; Hubisz et al. 2009). Previous analyses
(Carpenter et al. 2021) indicate that populations near both contact zones
each form two distinct genetic clusters; therefore, we examined K= 2. For
the east–west contact zone in the Great Plains, we used the admixture
model with correlated allele frequencies and no locpriors. For our analyses
of the two western genetic groups in the Rocky Mountain contact zone, we
used the no admixture model with correlated allele frequencies and
sampling locations set as locpriors because levels of genetic differentiation
were lower (Carpenter et al. 2021). The combination of these settings
allows for the detection of distinct genetic clusters within closely-related
populations and when hierarchal structure is weak (Hubisz et al. 2009;
Porras-Hurtado et al. 2013). For both analyses, we used a burn-in of 50,000
followed by 100,000 Markov chain Monte Carlo runs.

Spatial distribution of hybrid zones
We mapped the spatial distribution of hybridization across the Rocky
Mountain and Great Plains contact zones and quantified the area of each
contact zone. We mapped points where hybrids (individuals with Q values
>0.2 and <0.8) were captured in QGIS (version 10.13) and used the heat
map function to identify hybridization density across these contact zones.
To create heat maps, we used the default settings with a three-degree
buffer radius and the scaled values output. We then used the raster
calculator function to convert all areas with threshold values above three,
so that all pixels above this threshold received a new value of one, whereas
areas below this value received a value of zero. We chose this threshold
based on the distribution of hybridization events across our contact zone;
areas with a value above this threshold represent concentrated areas
where there was extensive hybridization, whereas areas with values below

this threshold represent areas with relatively few or no hybridization
events. We converted the raster file to a vector file with the raster-to-vector
conversion tool and used the area calculator to quantify the area covered
by hotspots on the map for each contact zone.

Habitat measurements
We collected habitat and elevation data for 544 warbling vireos. Habitat
data were extracted from the North American Land Monitoring System,
and we classified habitats into one of four categories: non-forested (NF),
deciduous forest (D), mixed deciduous and coniferous forest (M), and
coniferous forest (C). Data for elevation were extracted from the World
BioClim dataset (v.2.1; http://www.worldclim.org/) at 2.5 min resolution
(Hijmans et al. 2005). We focused on habitat and elevational differences
because the distribution of both western and eastern groups appears to be
delimited by these two variables. For example, the eastern genetic group
appears to be restricted to low elevation deciduous forests, whereas the
western genetic groups inhabit high elevation coniferous forests
(Carpenter et al. 2021).

Correlates with ancestry and habitat
First, we plotted the frequency of genotypes (mtDNA or microsatellite
ancestry) against habitat and elevation to visualize genetic variation across
the contact zone. Within the Great Plains contact zone, eastern mtDNA and
nuclear genotypes were plotted against six elevational categories (≤600,
≤1000, ≤1400, ≤1800, ≤2200, ≥2600m) and the four habitat categories. We
repeated this for the Rocky Mountain contact zone, but plotted the
frequency of northwestern nuclear genotypes.
We used two different modeling approaches to examine predictors of

ancestry and genetic differentiation. First, we used Spearman’s rank
correlation to examine the intercorrelations between ancestry, elevation,
and habitat. We used this approach to assess the relationship between
genetic variation and environmental variables because of the non-linear
nature of these data. The first analysis included samples from the Great Plains
contact zone (Montana, Alberta, and Saskatchewan) where eastern and
western warbling vireo genetic groups come into contact. We performed this

BA

DC

Fig. 2 Map of sampling sites. The geographic distribution of the 544 samples used for our study in the (A) northern Great Plains transect,
B southern Great Plains transect, C western Rocky Mountain transect, and (D) eastern Rocky Mountain transect.
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Table 1. Geographic location, the number of individuals (N) used in cyt b and microsatellite (msats) analyses, latitude and longitude for the
population and contact zone transect(s) (GP Great Plains, RM Rocky Mountain).

Geographic Location cyt b msats Latitude Longitude Transect

Central British Columbia• – 24 53.88 −122.82 West RM

Revelstoke, BC†
– 31 51.06 −118.19 West RM

Kamloops, BC†
– 7 50.59 −120.38 West RM

Vernon, BC†
– 14 50.33 −119.12 West RM

Kelowna, BC†
– 6 49.88 −119.56 West RM

Penticton/Okanagan Falls, BC†
– 6 49.50 −119.64 West RM

Oliver, BC†
– 4 49.17 −119.45 West RM

Osoyoos, BC†
– 11 49.10 −119.61 West RM

E.C. Manning Provincial Park, BC• – 5 49.06 −120.79 West RM

Nelson, BC†
– 9 49.44 −117.14 West RM

Okanogan, WA•* – 10 48.38 −119.92 West RM

Northeast WA• – 14 48.72 −117.56 West RM

Kittitas, WA•* – 10 47.02 −120.93 West RM

Wallowa-Whitman National Forest, OR•* – 10 45.00 −118.25 West RM

Southeast Oregon•* – 1 42.63 −118.76 West RM

Northeast California•* – 4 41.26 −120.13 West RM

Inyo, CA•* – 3 37.40 −118.23 West RM

Clark, NV•* – 10 36.36 −115.75 West RM

Lander, NV†* – 9 39.20 −117.09 West RM

Elko, NV•* – 10 41.88 −115.43 West RM

Valley, ID†* – 4 44.94 −116.078 West RM

Northeast Idaho†* – 8 47.35 −115.73 West RM

Canmore/Banff, AB• 7 15 51.07 −115.37 East RM, north GP

Jasper, AB• – 13 52.91 −118.09 East RM, north GP

Chinchaga River, AB†* 2 2 57.37 −119.13 East RM, north GP

Slave Lake, AB†* 4 4 55.50 −114.03 East RM, north GP

Swan Hills, AB†* 9 9 55.02 −115.48 East RM, north GP

Barrhead County, AB†* 24 25 54.01 −114.33 East RM, north GP

Cold Lake, AB•* 1 1 54.60 −110.19 North GP

South Edmonton, AB†* 14 14 53.26 −113.52 North GP

Alder Flats, AB†* 5 6 52.90 −115.09 North GP

Red Deer, AB†* 8 9 52.14 −113.48 North GP

Medicine Hat, AB• 7 7 50.03 −110.63 South GP

Cypress Hills Interprovincial Park, AB• 17 17 49.64 −110.03 East RM, south GP

Regina, SK• 7 10 50.42 −104.60 South GP

Lethbridge, AB† 4 6 49.70 −112.86 South GP

Fort Macleod, AB† – 1 49.73 −113.39 East RM, south GP

West Castle Provincial Park, AB• 9 15 49.37 −114.37 East RM, south GP

Waterton Lakes National Park, AB• 4 9 49.07 −113.98 East RM, south GP

Whitefish, MT† – 18 48.41 −114.58 East RM, south GP

Choteau, MT†* 5 10 47.60 −112.74 East RM, south GP

Helena, MT• 23 29 46.25 −112.47 East RM, south GP

110 km south of Great Falls, MT† 1 1 46.85 −110.89 East RM, south GP

South of Lewistown, MT•* 10 11 46.71 −109.33 East RM, south GP

Bozeman, MT† 2 31 45.59 −111.02 East RM, south GP

Gardiner, MT†* 3 4 45.28 −110.53 East RM, south GP

Red Lodge, MT† 26 27 45.15 −109.36 East RM, south GP

Bridger-Teton National Forest, WY• – 1 43.69 −110.60 East RM

29 km south of Lander, WY•* – 9 42.56 −108.72 East RM

Northeast Utah• – 4 41.46 −111.50 East RM

Larimer and Denver Counties, Colorado•* – 16 40.78 −105.91 East RM

La Plata County, Colorado•* – 10 37.31 −108.13 East RM

Total number of samples (N) 192 544

Populations with a • are from a previous study (Carpenter et al. 2021), populations with a † were new for this study, and populations with an asterisk (*) include
some museum samples.
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analysis on samples across the entire contact zone, as well as within the
northern and southern transects (Fig. 2A, B). For the second analysis, we
included all populations from the Rocky Mountain contact zone where the
two western genetic groups come into contact. This was also conducted
across the entire contact zone, as well as within the western and eastern
Rocky Mountain transects (Fig. 2C, D). For all of the analyses, we used the
ancestry coefficients (Q values) generated from STRUCTURE to quantify
ancestry. We did not examine the correlation between mtDNA and habitat in
the Rocky Mountain contact zone because of the low mtDNA genetic
differentiation between the two western genetic groups (Carpenter et al.
2021). Lastly, we looked at the influence of latitude on the Rocky Mountain
contact zone to account for the distribution of samples across a large
geographic area. All analyses were conducted in Past 3.0 (Hammar et al.
2001) and correlations were considered significant at p≤ 0.05.
For our second approach, we conducted distance-based and partial

redundancy models to examine the relationship between the environment
and genetic variation. This approach has been used in other studies
(Riordan et al. 2016; Hindley et al. 2018) to examine predictors of genetic
variation and is a more powerful option than Mantel tests (Legendre and
Fortin 2010). Distance-based and partial redundancy models are multi-
variate statistical approaches that use canonical analyses to examine the
effect of predictor variables on response variables. For these analyses, we
calculated Sforza-Chord genetic distances between individuals based on
our microsatellite datasets in Genodive 3.0 (Meirmans and Van Tienderen
2004). We examined the relationship between genetic distance and two
variables (habitat and elevation) across the Great Plains contact zone, and
three variables (habitat, elevation, and latitude) across the Rocky Mountain
contact zone. In both sets of analyses, we included geographic distance as
a variable to test the effect of isolation-by-distance on genetic distance.
Isolation-by-distance is often viewed as the null hypothesis for genetic
variance and divergence and including this in the analysis provided a
reference to compare the effects of other predictor variables within the
contact zones. Northern and southern transects were examined separately
within the Great Plains contact zone, as well as the eastern Rocky Mountain
and western Rocky Mountain transects within the Rocky Mountain contact
zone. Finally, we examined mtDNA differentiation across the Great Plains
contact zone using Nei’s genetic distance calculated in GenAlEx 6.5
(Peakall and Smouse 2012) for 192 individuals, and the effect of the same
two variables (habitat and elevation) on the microsatellite data and
isolation-by-distance on mitochondrial data.

Morphological variation
Carpenter et al. (2021) previously established that the eastern group is
morphologically distinct from both western groups, but for the purpose of
this study we wanted to investigate how morphology varies across the
contact zones and the relationship between morphological, genetic, and
environmental variation. To examine these patterns, we used Spearman’s
correlation to test intercorrelations between morphological variation,
habitat, elevation, and ancestry across both the Great Plains and Rocky
Mountain contact zones. For the Rocky Mountain contact zone, we also
tested the influence of latitude on morphological variation, as the western
populations included in this study covered a much broader area.

RESULTS
MtDNA screening
We assigned mtDNA ancestry for 192 individuals across 22
populations in the Great Plains contact zone. Two populations in
central Alberta (Barrhead County, Parkland County/Edmonton) and
one in southeastern Alberta (Cypress Hills) contained individuals
from both eastern and western mtDNA clades, while the remaining
19 populations contained either western or eastern haplotypes only.
In Barrhead County, 16 of the 24 individuals (67%) had eastern
haplotypes, while the remaining eight individuals (33%) had western
haplotypes. All but one of the 17 Cypress Hills birds contained
western mtDNA and the opposite pattern was observed in the 14
individuals from Parkland County, with all but one individual
grouping with the eastern mtDNA clade.

Microsatellites
Across the Great Plains contact zone, 9.2% (27 of 294) of
individuals were identified as hybrids (Fig. 3A, B). Nine of the 27

hybrids had Q values between 0.75 and 0.80 indicative of
advanced generation hybrids, and five other hybrids were possibly
first generation hybrids (0.6 < Q < 0.4). Two populations contained
individuals from both eastern and western genetic groups. In the
first population, Barrhead County, 72% of individuals (18 of 25)
had eastern genotypes, while the remaining 28% (7 of 25) had
western genotypes. By comparison, in the second population in
western Montana, 96.6% of individuals had western genotypes,
and one (3.4%) had an eastern genotype. Hybridization rates were
comparable between each of the northern and southern Great
Plains transects; 9.7% of the birds (19 of 196) in the south and
8.2% (8 of 98) of individuals in the north were identified as
hybrids.
When we examined mtDNA and microsatellite patterns

together for the Great Plains contact zone (N= 192), a small
proportion of individuals (5 of 192 individuals, 2.6%) exhibited
cytonuclear discordance; where the mtDNA genotype did not
match with the nuclear genotype (e.g., individuals had eastern
mtDNA, but grouped with the western genetic group based on
microsatellite data). Three of these five individuals were from
central Alberta, two sites that fall in the contact zone described by
Lovell et al. (2021). The other two individuals with cytonuclear
discordance were from Cypress Hills, AB and Helena, MT.
Across the Rocky Mountain contact zone, 36.4% (164 of 450) of

individuals were identified as hybrids (Fig. 3C, D). Hybridization
occurred extensively throughout the Rocky Mountains (Fig. 3);
forty-one of the hybrids had Q values between 0.4 and 0.6, while
the remaining 123 hybrids had Q values >0.6. Of these hybrids a
large proportion of individuals (62%; 76 of 123) had higher
northwestern ancestry, and 37 had higher southwestern ancestry.
Hybridization rates were comparable between transects; west of
the Rocky Mountains, 34.3% (72 of 210) of individuals were
identified as hybrids, while east of the Rocky Mountains 38.3% (92
of 240) of individuals were identified as hybrids.
Eastern and western warbling vireos come into contact across a

broad area (Fig. 4). Our spatial analyses indicate that the Great
Plains contact zone encompasses an area of 294,187 km2. Within
the Great Plains contact zone, the northern contact zone
(73,733 km2) is about one third the size of the southern contact
zone (220,454 km2). The Rocky Mountain contact zone is much
larger (1,142,793 km2), approximately four times greater than the
Great Plains contact zone. Within the Rocky Mountain contact
zone, the eastern Rocky Mountain contact zone spans a larger area
(1,102,147 km2) than the western Rocky Mountain contact zone
(664,708 km2). The eastern and western Rocky Mountain contact
zones overlap in a narrow area (54,181 km2) in southern British
Columbia, northern Idaho, and Montana.

Correlates with ancestry and genetic distance
Plots examining the frequency of eastern microsatellite and
mtDNA genotypes across habitat and elevation suggest that
genetic variation is clinal across the Great Plains contact zone
(Fig. 5A–D). Nuclear ancestry changed with elevation (r= 0.46)
and habitat (r= 0.57) (Table 2). Eastern genotypes became less
common as elevation increased and were less abundant in mixed
and coniferous forests. By comparison, mtDNA haplotypes showed
a strong correlation with elevation (r= 0.67) and habitat (r= 0.74).
Within the northern Great Plains transect, nuclear ancestry was
strongly correlated with elevation (r= 0.59) and habitat (r= 0.73),
and mtDNA variation was strongly correlated with habitat (0.69),
while the correlation between mtDNA haplotypes and elevation
(r= 0.47) was moderate. In the southern Great Plains transect, we
observed similar patterns for the correlation between nuclear
ancestry and elevation (r= 0.61) and habitat (r= 0.54), whereas
mtDNA haplotypes were strongly correlated with both habitat
(r= 0.75) and elevation (r= 0.75).
Across the Rocky Mountain contact zone, correlations between

nuclear ancestry and elevation were moderate (r=−0.46), while
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ancestry was weakly correlated with habitat (r=−0.21, Fig. 5E, F).
Northern genotypes were more prominent at lower elevations,
and in deciduous and mixed forests. The correlation between
elevation and nuclear ancestry appears to be driven by patterns in
the eastern Rocky Mountain contact zone, where this correlation is
relatively stronger than the patterns we observed in the western
Rocky Mountain contact zone (reast=−0.52 vs. rwest=−0.18).
Both northwestern and southwestern nuclear genotypes had
similar frequencies in coniferous forests. Within each of the Rocky
Mountain transects, we observed a similar relationship between
nuclear ancestry and habitat where ancestry was weakly
correlated with habitat (western transect r=−0.25; eastern
transect r=−0.21). Nuclear ancestry was moderately correlated
with latitude, as northwestern genotypes replaced southwestern

genotypes at higher latitudes; this pattern was maintained across
both the western (r= 0.54) and eastern (r= 0.57) Rocky Mountain
contact zone transects.
Habitat and elevation explained a small but significant

proportion of genetic divergence in the Great Plains contact zone
based on our analyses using dbRDA and partial-dbRDA models
(Table 2). Habitat (R2= 3.9%) accounted for greater variation
(based on microsatellite genetic distance) than elevation (R2=
2.9%), but the model that included both habitat and elevation
variables accounted for a greater proportion of the variance (R2=
5.2%). We detected a pattern of isolation-by-distance (R2= 3.7%);
habitat and elevation explained a small proportion of the genetic
variation when we accounted for geographic distance (R2= 2.9%).
These patterns across the entire Great Plains contact zone were

Fig. 3 Map of habitat and elevation at contact zones. Distribution of hybrids in the Great Plains contact zone across (A) elevational and
(B) habitat gradients, and hybrids in the Rocky Mountain contact zone across (C) elevational and (D) habitat gradients. Triangles denote
putative hybrids between eastern and western genetic lineages (A, B), while circles denote putative hybrids between the two western genetic
lineages (C, D).
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primarily maintained when we analyzed the northern and
southern transects separately. Our mtDNA models using Nei’s
genetic distances performed better than our models using
microsatellite data, but yielded similar results. Habitat and
elevation again accounted for greater variation than any other
variable (R2= 66.2%). We also detected a pattern of isolation-by-
distance (R2= 36.7%, p < 0.001); habitat and elevation explained a
proportion of the genetic variation when we accounted for
geographic distance (R2= 32.7%). MtDNA patterns were compar-
able across both transects in the Great Plains contact zone,
although elevation and isolation-by-distance accounted for
greater variation in the southern transect than the northern
transect (elevation: R2southern= 56.5% vs. R2northern= 22.1%; isola-
tion-by-distance: R2southern= 47.1% vs. R2northern= 14.4%).
Habitat, elevation, and latitude (R2= 0.2–1.0%) together

accounted for a small proportion of the observed variance (using
dbRDA and partial-RDA) in microsatellite genetic divergence for the
Rocky Mountain contact zone, and only habitat was significant.
When we analyzed the eastern and western transects separately,
habitat, elevation, latitude, and geographic distance were all
significant predictors, although the variables accounted for a
relatively small portion of the variance (R2= 0.5–2.6%). Patterns
across both western and eastern Rocky Mountain transects were
similar. Overall, habitat and elevation accounted for the greatest
portion of variance and these values were comparable between
transects (eastern Rocky Mountain transect: R2= 1.9, p= 0.03;
western Rocky Mountain transect: R2= 2.6, p= 0.003).

Morphological variation
Correlations between ancestry and mass (r=−0.54) and wing
length (r=−0.42) were moderate across the Great Plains contact
zone (Table 3). Birds with western genotypes are smaller than
birds with eastern genotypes. Within the Great Plains transects,
wing length (r=−0.69) and mass (r=−0.77) were more strongly
correlated with ancestry in the northern transect than the
southern transect (wing length: r=−0.37; mass: r=−0.57). Mass
and wing length were also correlated with habitat and elevation,
but mass and wing length decreased with increases in elevation
(mass: r=−0.51; wing length: r=−0.27) and the transition from
deciduous to mixed and coniferous forests (mass: r=−0.45; wing
length: r=−0.38).
Across the Rocky Mountain contact zone, the correlation

between morphology and nuclear genotype was less apparent.
Wing length was weakly correlated with ancestry (r=−0.12) and
mass was not correlated with ancestry (r= 0.02); these patterns
were not maintained when we analyzed the eastern and western
Rocky Mountain transects separately. Wing length showed weak
correlations with both elevation (r= 0.26) and habitat (r=−0.17),
but mass was not correlated with either of these variables (r=
−0.03 and −0.01, respectively). The relationship between wing
length, habitat, and elevation appears to be driven by the eastern
Rocky Mountain transect (elevation: r= 0.16; habitat: r=−0.21), as
wing length was not correlated with either variable in the western
Rocky Mountain transect. Wing length was weakly correlated with
latitude (r=−0.20), a pattern maintained in the eastern Rocky

A B

C

Fig. 4 Hybridization heat map. Heat map summarizing the distribution of areas where hybridization is more prominent in areas of secondary
contact in (A) the Great Plains, (B) west of the Rocky Mountains, and (C) east of the Rocky Mountains. Darker colors indicate areas where the
probability of hybridization is increased.
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Mountain transect (r=−0.17), but not present in the western
Rocky Mountain transect (r=−0.03).

DISCUSSION
The results of our study provide evidence for the complexity and
variability of secondary contact and hybrid zones. Genetic
divergence, in the Great Plains contact zone, between eastern
and western warbling vireos is closely tied to habitat and elevation
with hybrids found predominately in transitional areas. Compara-
tively, genetic structure and hybridization in the Rocky Mountain
contact zone is weakly correlated with habitat and elevation.
While morphological differences are correlated with habitat and
elevation in the Great Plains contact zone, both of these variables
are also strongly correlated with ancestry suggesting that
morphological variation may be better predicted by genetic
differentiation.
Habitat type explained nuclear ancestry and mtDNA clade

assignment across the Great Plains contact zone, with a decrease
in the frequency of eastern genotypes and haplotypes as habitat
transitioned from non-forested and deciduous forests to mixed
and coniferous forests. Although previous work brought attention
to this relationship between habitat and genetic ancestry in the
central Alberta contact zone (Lovell et al. 2021), our study provides
empirical evidence that ancestry varies with both habitat and
elevation. This correlation between habitat and genetic diver-
gence is common among vireonids (Johnson 1995; Cicero and
Johnson 1998; Zwartjes 2001) and other animal species (Carling
and Thomassen 2012; Tarroso et al. 2014; Martin et al. 2017; Bell
and Irian 2019; MacDonald et al. 2020). Western and eastern
populations of warbling vireos likely diversified as the result of
isolation in multiple refugia during Pleistocene glaciations (Lovell

et al. 2021; Carpenter et al. 2021), a pattern common for other
boreal (Weir and Schluter 2004) and temperate species (Johnson
and Cicero 2004; Spellman and Klicka 2007; Manthey et al. 2011).
This relationship between genetic ancestry and habitat likely
reflects different environmental conditions during the Last Glacial
Maximum (Avise 2000; Swenson 2006), and postglacial range
expansion by both eastern and western warbling vireos likely
followed, and were limited by, the recolonization of certain tree
species and climate gradients (Williams 2003; Swenson 2006).
Lovell et al. (2021) found that hybridization between eastern

and western warbling vireo populations occurs across a narrow
hybrid zone in central Alberta, a transitional zone between
deciduous-dominated parkland habitat and coniferous-dominated
boreal forest. Our study of a larger geographic area and more
samples indicates that hybridization in the Great Plains occurs
across a broader area than previously reported. Our analyses also
demonstrate that elevation influences genetic ancestry across the
Great Plains contact zone, especially for mtDNA patterns where
eastern haplotypes are almost entirely absent above 1000m.
Given the role of avian mitochondria in meeting energetic
demands, selection for western haplotypes may potentially occur
in response to the physiological requirements of higher elevation
environments (Cheviron and Brumfield 2012; Abbott and Brennan
2014; Toews et al. 2014).
Ecological and habitat differences are known to act as mechan-

isms of diversification within the genus Vireo (Cicero and Johnson
1998) and these results from the Great Plains contact zone adds to
this literature. In contrast, these same variables did not explain
hybridization patterns across the Rocky Mountain contact zone
between western warbling vireo genetic groups. The greater size of
the Rocky Mountain contact zone and distribution of hybrids
compared to the Great Plains contact zone reflects the weak

Table 3. Spearman’s rank correlations between genetic, morphological, and habitat variation across the Great Plains and Rocky Mountain contact
zones, and the two separate transects within each.

Contact zone Variable N Elevation p Habitat p Ancestry p Latitude p

Great Plains Ancestry 294 0.46 <0.001 0.59 <0.001 – – – –

mtDNA 192 0.67 <0.001 0.74 <0.001 0.91 <0.001 – –

Wing length 242 −0.27 <0.001 −0.38 <0.001 −0.42 <0.001 – –

Mass 242 −0.51 <0.001 −0.45 <0.001 −0.54 <0.001 – –

Northern Great Plains Ancestry 98 0.59 <0.001 0.73 <0.001 – – – –

mtDNA 74 0.47 <0.001 0.69 <0.001 0.92 <0.001 – –

Wing length 82 −0.36 <0.001 −0.47 <0.001 −0.69 <0.001 – –

Mass 82 −0.44 <0.001 −0.65 <0.001 −0.77 <0.001 – –

Southern Great Plains Ancestry 196 0.61 <0.001 0.54 <0.001 – – – –

mtDNA 120 0.75 <0.001 0.75 <0.001 0.87 <0.001 – –

Wing length 160 −0.13 0.09 −0.30 <0.001 −0.37 <0.001 – –

Mass 160 −0.50 <0.001 −0.33 <0.001 −0.57 <0.001 – –

Rocky Mountains Ancestry 471 −0.46 <0.001 −0.21 <0.001 – – 0.55 <0.001

Wing length 328 −0.26 <0.001 −0.17 0.002 −0.12 0.03 −0.20 <0.001

Mass 328 −0.03 0.64 −0.01 0.970 0.02 0.73 −0.03 0.63

Western Rocky
Mountains

Ancestry 210 −0.18 0.04 −0.25 0.004 – – 0.54 0.004

Wing length 125 0.11 0.21 0.17 0.26 −0.04 0.68 −0.03 0.71

Mass 125 −0.10 0.29 0.19 0.03 0.04 0.67 0.08 0.37

Eastern Rocky
Mountains

Ancestry 264 −0.52 <0.001 −0.22 0.09 – – 0.57 <0.001

Wing length 203 0.16 0.04 −0.21 <0.001 −0.12 0.09 −0.17 0.02

Mass 203 −0.10 0.15 −0.08 0.62 0.04 0.52 0.07 0.34

N represents the sample size for each analysis and bold values are significant correlations at p < 0.05.
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relationship between ancestry and environmental variables. While
individuals of northwestern ancestry were most common in mixed
forests and those with southwestern ancestry in non-forested
habitat, the proportion of individuals with northwestern and
southwestern ancestry in both deciduous and coniferous forests
was similar. Our characterization of habitat types into four broad
categories may not have been able to detect discrete fine-scale
habitat patterns between the more closely-related western warbling
vireo genetic groups, such as whether northwestern or south-
western populations are associated with certain tree species, as has
been suggested for other taxa (van Els et al. 2012; Graham et al.
2021). Moreover, we believe that a plausible explanation for the
weak relationship between nuclear genotype and habitat is
attributed to the recent isolation of these taxa. Mitochondrial
divergence between western warbling vireos (northwestern and
southwestern groups, respectively 0.2–0.3%; Carpenter et al. 2021) is
low when compared to ecologically diverged eastern and western
warbling vireos (3–4%; Lovell et al. 2021; Carpenter et al. 2021).
Furthermore, the relatively low mtDNA genetic variation within this
western clade may be indicative of a selective sweep for haplotypes
adapted to high elevation environments (Dubay and Witt 2014).
Similar to habitat, the correlation between ancestry and

elevation across the Rocky Mountain contact zone did not entirely
explain the patterns of nuclear genetic divergence among

populations of western warbling vireos. Overall, birds with
southwestern genotypes are more prominent at higher elevations
than those with northwestern genotypes. This trend likely reflects
the biogeographic nature of the southwestern genetic group’s
range, with much of its distribution in the southwestern United
States, where some of the tallest mountains in the contiguous
United States (e.g., Sierra Nevada’s) are found. Other vertebrate
and plant species exhibit similar genetic patterns (Spellman and
Klicka 2007; Haselhorst et al. 2019), and these patterns likely arose
as a result of barriers to gene flow and Pleistocene glaciations.
Finally, morphology varies across both the Great Plains and Rocky

Mountain contact zones. Morphological differences between east-
ern and western warbling vireos are more pronounced than those
between the two western groups (Carpenter et al. 2021). Across the
Great Plains contact zone, mass and wing length are moderately
correlated with habitat and elevation, and the strength of these
relationships is comparable to the relationship between ancestry
and morphological variation. Eastern and western warbling vireos
follow separate migratory routes (Voelker and Rohwer 1998), and
differences in wing length may reflect the fact that eastern birds
migrate longer distances than western birds, as has been shown for
other migratory species (Marchetti et al. 1995; Nowakowski et al.
2014). Morphological differences and nuclear ancestry were not
correlated in the Rocky Mountain contact zone; however, the

1 2 3 4 5 6

   1

0.8

0.6

0.4

0.2

   1

0.8

0.6

0.4

0.2

   1

0.8

0.6

0.4

0.2

0

0

0
600         1000        1400         1800         2200        2600 Non-forested Deciduous 

forest
Mixed
forest

Coniferous
forest

Elevation (m) Habitat

Fr
eq

ue
nc

y 
of

 n
or

th
w

es
te

rn
nu

cl
ea

r D
N

A
Fr

eq
ue

nc
y 

of
 e

as
te

rn
nu

cl
ea

r D
N

A
Fr

eq
ue

nc
y 

of
 e

as
te

rn
m

tD
N

A

AA B

C D

E F

Fig. 5 Graphs of genetic ancestry versus elevation and habitat. Proportion of individuals assigned to eastern or northwestern genetic
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absence of morphological variation between western groups could
be due to these birds following similar migratory pathways, exploit
similar habitat, or are found at similar elevation.

CONCLUSIONS
Our analyses of two large contact zones, and multiple transects
within each, demonstrates how variable admixture and hybridiza-
tion can be. The Great Plains and Rocky Mountain contact zones
vary substantially in size and shape; looking at independent
transects showcases the dynamic nature of each of these zones,
an aspect that has been poorly studied. Our research highlights
the importance of habitat and elevation in promoting and
maintaining isolation among divergent lineages, like eastern and
western warbling vireo genetic groups along the Great
Plains–Rocky Mountain ecotone. Although neither of these
variables in our study promote isolation between the two western
genetic groups, this result likely reflects their recent divergence
and similar niches. Combined, our work adds novel insight into
patterns of secondary contact across an expansive latitudinal
scale, and the environment’s role in mediating hybridization
between ecologically-adapted and divergent cryptic groups.

DATA AVAILABILITY
Sequence data are available in GenBank with the following accession numbers for
some of the samples used in this study: ON087602-ON087609 https://doi.org/
10.5061/dryad.p5hqbzkrc.
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