
Molecular Ecology. 2023;32:3089–3101. wileyonlinelibrary.com/journal/mec  | 3089© 2023 John Wiley & Sons Ltd.

1  |  INTRODUC TION

The study of species' geographic limits encompasses some of the 
most fundamental processes in ecology and evolution including 
dispersal, gene flow, and adaptation. Species' ranges can be deter-
mined by abiotic factors such as precipitation, day length, and soil 
chemistry as well as by biotic factors such as population density, 
interspecific interactions, predator– prey relationships, and food 

resource availability (Cahill et al., 2014; Gaston, 2003; Louthan 
et al., 2015). Anthropogenic- induced changes in these factors can 
therefore result in rapid shifts in species abundance and distribution 
(Parmesan, 2006; Urban, 2015). For example, a staggering decline in 
North American bird abundance since 1970 has been documented 
and is potentially attributed to increased agriculture, urbanization, 
habitat loss, and climate change (Rosenberg et al., 2019). However, 
not all environmental shifts result in population decline —  some 
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Abstract
Anthropogenic changes have altered the historical distributions of many North 
American taxa. As environments shift, ecological and evolutionary processes can 
combine in complex ways to either stimulate or inhibit range expansion. Here, we ex-
amined the role of evolution in a rapid range expansion whose ecological context has 
been well- documented, Anna's Hummingbird (Calypte anna). Previous studies have 
suggested that the C. anna range expansion is the result of an ecological release facili-
tated by human- mediated environmental changes, where access to new food sources 
have allowed further filling of the abiotic niche. We examined the role of gene flow 
and adaptation during range expansion from their native California breeding range, 
north into Canada and east into New Mexico and Texas, USA. Using low coverage 
whole genome sequencing we found high genetic diversity, low divergence, and lit-
tle evidence of selection on the northern and eastern expansion fronts. Additionally, 
there are no clear barriers to gene flow across the native and expanded range. The 
lack of selective signals between core and expanded ranges could reflect (i) an ab-
sence of novel selection pressure in the expanded range (supporting the ecological 
release hypothesis), (ii) swamping of adaptive variation due to high gene flow, or (iii) 
limitations of genome scans for detecting small shifts in allele frequencies across 
many loci. Nevertheless, our results provide an example where strong selection is not 
apparent during a rapid, contemporary range shift.
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species have also been able to adapt to these changes (Hancock 
et al., 2011; Pespeni & Palumbi, 2013) or track optimal condi-
tions, especially moving poleward and to higher elevation (Hitch & 
Leberg, 2007; La Sorte & Jetz, 2010). In fact, a number of North 
American birds appear to be shifting their ranges northward due 
in part to warmer temperatures and land use changes (Hitch & 
Leberg, 2007; Hovick et al., 2016; La Sorte & Thompson III, 2007; 
Princé & Zuckerberg, 2015). Contemporary shifts in species' ranges 
provide an opportunity to examine the factors defining range limits 
in real time.

While the ecological causes of range expansions are often well 
documented, evolutionary processes also contribute to changes in 
species' distributions. These processes include spatial sorting, nat-
ural selection, and genetic drift, which can act on species' ranges 
in intuitive ways. Spatial sorting followed by assortative mating 
among successful colonizers can shift phenotypic traits associated 
with expansion, such as dispersal abilities, which in turn can lead 
to further colonization (Cote et al., 2017; Travis et al., 2010; Weiss- 
Lehman et al., 2017). A good example of this is shown in multiple 
species of bush crickets, where frequencies of long- winged morphs, 
which have higher dispersal ability, are more common at the range 
front (Simmons & Thomas, 2004). Selection on life history traits 
that increase the reproductive rate can also promote range expan-
sion, as can adaptation to novel environments (Andrade- Restrepo 
et al., 2019; Szűcs et al., 2017). Such is the case with the invasive 
shrub Hypericum canariense, which has evolved higher growth rates 
and local adaptation in flowering time (Dlugosch & Parker, 2008). 
Finally, strong genetic drift caused by small population sizes and se-
rial bottlenecks at the range edge decreases genetic variation and 
limits the expansion potential (Excoffier, 2004; Excoffier et al., 2009).

While it is clear that spatial sorting, selection, and drift can each 
contribute to distributional limitations, theoretical and empirical lit-
erature also show us that these same evolutionary processes can 
have conflicting effects on range expansion outcomes depending on 
the context (Miller et al., 2020; Williams et al., 2019). For example, 
allele surfing, the fixation of alleles along an expansion front, can 
lead to greater expansion potential if the fixed alleles are benefi-
cial, but the fixation of deleterious alleles can reduce fitness at the 
edge —  a phenomenon known as expansion load —  reducing the ex-
pansion potential (Klopfstein et al., 2006; Peischl et al., 2013; Peischl 
& Excoffier, 2015; Travis et al., 2007). Broadly, reduced gene flow 
(with gene flow defined as the movement of individuals and alleles) 
from the species' core to the range edge can decrease genetic diver-
sity and thus adaptive potential. However, high gene flow can lead to 
either increased genetic diversity and higher evolutionary potential 
or a propagation of maladaptive alleles from the species core that can 
limit local adaptation at the edges (Bontrager & Angert, 2019; Eckert 
et al., 2008; Fedorka et al., 2012; García- Ramos & Kirkpatrick, 1997). 
Understanding and predicting the dynamics of range expansions 
therefore requires an understanding of the direction and magnitude 
of gene flow, levels of genetic diversity, and landscape of adaptive 
divergence across the species range paired with a knowledge of the 
ecological context in which the range expansion is occurring.

Foundational theoretical work has provided a framework for 
understanding the interplay between stochastic and deterministic 
forces in facilitating or hindering range expansion. In many cases, 
range expansions are expected to lead to higher divergence and 
lower genetic diversity at the expanding edge compared to the core 
due to small population sizes, serial bottlenecks, reduced gene flow, 
and selection pressures (Excoffier, 2004; Excoffier et al., 2009). This 
mixture of neutral and adaptive processes across the expansion 
axis often leads to spatial structuring and patterns of isolation by 
distance (Excoffier, 2004). Termed a “pulled wave”, the founders at 
the range edge pull the expansion forward through increased dis-
persal and reproduction that stratifies demes (Miller et al., 2020). 
However, the opposite pattern of maintained/increased genetic 
variance at expansion fronts has also been reported in several 
empirical studies (Berthouly- Salazar et al., 2013; Bors et al., 2019; 
Vandepitte et al., 2017; Wang et al., 2017). Conceptual frameworks 
term these cases “pushed waves,” where genetic variation is main-
tained at the range edge due to gene flow from the range core and 
potentially positive density dependence, novel interspecific compe-
tition, or environmental stress that result in less genetic sorting at 
the edge (Miller et al., 2020). These varying outcomes suggest that 
the interplay between neutral and selective evolutionary processes 
create variation in range expansion outcomes giving rise to more nu-
anced approaches to ecoevolutionary dynamics. (Miller et al., 2020; 
Williams et al., 2019).

A recent and dramatic range expansion in Anna's Hummingbird 
(Calypte anna) provides an ideal system to examine the evolution-
ary processes associated with rapid range expansion (Battey, 2019; 
Greig et al., 2017; Zimmerman, 1973). The historical breeding range 
of C. anna is central and southern California, USA and northwest-
ern Mexico (Grinnell, 1915; Grinnell & Miller, 1944). By leveraging 
community science (Project FeederWatch, Christmas Bird Count) 
and museum data, previous studies showed a northern and eastern 
expansion of the breeding range starting around 1940 (Battey, 2019; 
Greig et al., 2017; Zimmerman, 1973). Currently, C. anna can be 
found breeding as far north as British Columbia, Canada, and south-
ern Alaska, USA and as far east as Idaho, USA and western Texas, 
USA (Rudeen & Bassett, 2016; Zimmerman, 1973). Human habita-
tion and climate change appear to be the drivers of the expansion. In 
the expanded ranges C. anna individuals were more likely to colonize 
areas with higher housing density and were more likely to visit bird 
feeders compared to those in the historical range (Greig et al., 2017). 
However, like many North American migratory birds, they may also 
experience mortality associated with urban settings such as win-
dow collisions and encounters with domesticated animals (Pandit 
et al., 2021). Increases in minimum winter temperatures were also 
shown to facilitate the expansion (Battey, 2019; Greig et al., 2017). 
However, Zimmerman (1973) suggested that the range expansion 
was largely driven by an “ecological release” facilitated by introduced 
plants and supplemental feeding and that C. anna's climate niche had 
previously existed in the expanded ranges. Together the ecological 
evidence exposes open questions about whether populations at the 
expansion front are experiencing novel selection pressures.
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Little is known about genetic variation and population structure 
in C. anna beyond one study that showed low divergence between 
three California populations (Engeln, 2013) and observations of mi-
gration in some California populations, potentially tracking food re-
sources, though these movements seem to be largely post- breeding 
(Clark & Russell, 2012). Further, the genetic makeup of populations 
in the expanded regions and whether they are adapting to the novel 
environments has not yet been explored. Here we present the first 
species- wide genomics study of C. anna, examining the distribution 
of genetic diversity across the native and expanded breeding range. 
First, we ask if there is evidence of population structure between 
the native and expanded breeding ranges. We would expect genetic 
divergence between native and expanded ranges if the expansions 
follow a stepping- stone model of colonization (Clegg et al., 2002; Le 
Corre & Kremer, 1998; Nei, 1972). We also test for genomic signals 
of selection between the native and expanded ranges. We expect to 
detect differing signals of selection between each leading edge and 
core populations due to unique combinations of selection pressures 
in the northern versus eastern range (Angert et al., 2020; Burton 
et al., 2010). Additionally, we may detect parallel selection signals 
at the range edges due to selection on traits associated with range 
expansion itself (Angert et al., 2020; Burton et al., 2010; Phillips 
et al., 2010). The degree to which adaptation occurs and can be 
detected in our data will depend on a number of factors, includ-
ing gene flow across the range, the strength of selection, and the 
genetic architecture of the traits under selection. The two leading 
edges (northern and eastern) allow us to compare these expansions 
to answer questions about adaptation, gene flow, and genetic diver-
sity across the native and expanded range, and broadly add to our 
understanding of ecoevolutionary dynamics in natural populations.

2  |  MATERIAL S AND METHODS

2.1  |  Sampling

We collected blood (N = 178) and tissue (N = 160) samples from live 
hummingbirds and carcasses for a total of 338 unique humming-
birds across the historical Central and Southern California range and 
the expanded breeding ranges in Northern California, Washington, 
Arizona, and Nevada (Figure 1). Although C. anna can undergo post- 
breeding dispersal, we focused on sampling individuals in their 
breeding areas. Regions were categorized as “expanded” or “native” 
based on the predicted 1940 breeding range of C. anna as classified 
by Battey (2019). Although there are historical records of C. anna 
outside this range, the breeding range is most suitable for this clas-
sification in our study given that we are investigating genetic pro-
cesses associated with range expansion and only during breeding 
time is genetic material exchanged. Hummingbirds were trapped 
using previously published methods (Russell & Russell, 2001) by a 
federally permitted hummingbird bander (Tell; US Geological Survey 
Bird Banding Laboratory Permit no. 23947). When possible, female 

birds were examined for evidence of an enlarged oviduct or the pres-
ence of an egg for inclusion in the study. Blood was collected (20– 
30 μL, <1% bodyweight) via a toenail clip (N = 166; (Tell et al., 2021)) 
and placed in Queen's lysis buffer (Seutin et al., 1991), or blood was 
collected on an FTA card (N = 12). All collection methods were ap-
proved by the University of California, Davis IACUC (F no. 20355). 
In addition to samples taken from live birds in the field, we added 
specimens from the Burke Museum collection at the University of 
Washington and carcasses from wildlife centers for nestlings or 
fledglings that did not survive the rehabilitation process (see Data S1, 
ANHU_metadata4ms.xlsx, for sample details). For native range sam-
ples, we used females and males collected between February and 
August when many of the birds that we sampled showed evidence 
of breeding. This also corresponds to the broad breeding season 
synthesized by nest reports (Battey, 2019). However due to low 
sample availability we used females and males collected throughout 
the year in the expanded regions. Sampling outside of the breeding 
season, however, did not appear to affect our results (see Section 3).

2.2  |  DNA extraction and species identification

Whole genomic DNA was extracted from muscle tissue (for museum 
collection birds or carcasses from rehabilitation centres), 100– 150 
μL of blood stored in lysis buffer, or 2 to 3 blood spots from a blood 
collection card using the DNeasy Blood & Tissue Kit (Qiagen). The 
following modifications to the extraction protocol were used: sam-
ples were incubated overnight at 56°C, the sample was passed over 
the spin column twice prior to washing, an extra column drying step 
was taken (20,000 g for 3 min), and DNA was eluted in 200 μL AE 
buffer heated to 56°C. Whole genomic DNA was quantified using a 
Qubit Fluorometer (Thermo Fisher Scientific) and the quality of DNA 
was assessed using a 2% agarose gel.

Because nestling and fledgling hummingbirds are difficult to 
identify to species, we used molecular methods to determine which 
of the juvenile samples represented C. anna and thus could be used 
in our study. To identify nestlings and fledglings from the wildlife 
centers as C. anna we used Sanger sequencing to sequence 32 un-
known individuals and 30 known samples from Anna's (C. anna) 
and other hummingbird species likely to be collected in the region: 
Costa's (C. costae), Allen's (Selasphorus sasin), Calliope (S. calliope), 
and Rufous (S. rufus) hummingbirds. We amplified part of the NADH 
dehydrogenase subunit 2 (ND2) gene using H6313 and L5219 prim-
ers (Sorenson et al., 1999), cleaned the products using an ExoSAP 
protocol, then sequenced them at UCDNA Sequencing Facility at 
the University of California, Davis. We trimmed and aligned the re-
sulting sequences and used the neighbour- joining method to build 
the tree in Geneious version 9.1.7 (http://www.genei ous.com/). We 
visualized the phylogenetic tree with FigTree (http://tree.bio.ed.ac.
uk/softw are/figtr ee/) using a Black- chinned Hummingbird sample 
to root the tree. Black- chinned Hummingbird was used because it 
was outside of the Selasphorus and Calypte subclades between which 
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we were identifying unknown samples. ND2 is a marker often used 
to create hummingbird phylogenies (Licona- Vera & Ornelas, 2017; 
McGuire et al., 2007, 2014), and in our study has consistently sep-
arated individuals that are C. anna from other hummingbird species 
found in California.

2.3  |  Library preparation, and whole 
genome sequencing

We used a modified library preparation based on Illumina's Nextera 
protocol (Baym et al., 2015; Overgaard Therkildsen & Palumbi, 2017) 
to sequence whole genomes of 283 birds. To start, genomic DNA 
was standardized to 3 ng/μL then underwent a tagmentation step 
using TDE1 enzyme and buffer (Illumina). Dual combination Nextera 
indexes (Illumina) were then added to tagged DNA fragments fol-
lowed by a booster PCR using the Kapa HiFi Kit (Kapa Biosystems). 
Libraries were then bead cleaned and single size selected to remove 
fragments <320 bp using AMPure XP Beads (Beckman Coulter) and 

quantified using a Qubit Fluorometer (Thermo Fisher Scientific). All 
libraries were pooled equimolarly then visualized with a Bioanalyser 
(Agilent). The pooled libraries were further size selected to 320– 
500 bp fragments using Ampure XP Beads (Beckman Coulter). A 
subset of samples (N = 40) was size selected using Blue Pippin (Sage 
Science; University of California Davis Genome Centre). The final 
libraries were sequenced on an Illumina HiSeq 4000 as 150 bp 
paired- end reads and the resulting sequences were demultiplexed 
by Novogene. The samples were sequenced across seven lanes to 
target 2.5× coverage.

2.4  |  Data processing

Adapters and low- quality reads were trimmed using Trimmomatic 
(Bolger et al., 2014) or Trim Galore! (a wrapper around Cutadapt 
(Martin, 2011), accessible at http://www.bioin forma tics.babra 
ham.ac.uk/proje cts/trim_galore). Each sample was aligned to the 
C. anna reference genome, GCA_003957555.2 (Korlach et al., 2017) 

F I G U R E  1  (a) Map of C. anna samples grouped by region with native (triangle) or expanded (circle) range indicated by shape. The regions 
are defined as follows: Washington state (WAS), Humboldt County (HUM), San Francisco Bay Area (BAY), California Central Valley (VAL), 
Pacific Coast (PAC), and the eastern expanded region (EAS). (b) Genetic divergence (weighted FST) showing little relationship with increasing 
pairwise county geographic distance (y = 0.004– 8.6E−10x). (c) Hierarchical clustering analysis for 2 (K = 2) ancestral groups, which was found 
to be the optimal number of groups. For additional ancestral groups (K = 3– 5) see Figure S4. (d) The second and third components from the 
principal component analysis (PCA) in which samples are coloured by region (see [a]) and the shapes indicate if the samples are from the 
native (circle) or expanded (triangle) ranges. The first axis appeared to be driven by sequencing pool (see Figure S5A). [Colour figure can be 
viewed at wileyonlinelibrary.com]
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using bwa mem (Li & Durbin, 2010) then sorted and indexed using 
Samtools (Li et al., 2009). For individuals sequenced across two 
lanes, bam files were merged using Samtools (Li et al., 2009). For 
all samples, duplicate reads were marked with MarkDuplicates from 
Picard Tools (http://broad insti tute.github.io/picard). For a subset of 
samples (N = 40), duplicate reads were removed using FastUniq (Xu 
et al., 2012) prior to mapping.

Single nucleotide polymorphisms (SNPs) were identified, 
and genotype likelihoods were estimated using the ANGSD tool 
(Korneliussen et al., 2014) accessed through ngsTools (Fumagalli 
et al., 2014). For the parameters used in ANGSD see Table S1. 
Potentially related samples were identified with NGSrelate 
(Korneliussen & Moltke, 2015), using the rab metric which calcu-
lates pairwise relatedness based on (Hedrick et al., 2015). For pairs 
of related samples (rab > 0.45), one individual of each pair was 
removed.

2.5  |  Population structure

Population structure was analysed using principal components 
analysis as well as hierarchical clustering analysis. A covariance ma-
trix was calculated using PCAngsd (Meisner & Albrechtsen, 2018) 
and then we used RStudio version 1.3.1093 (RStudio Team, 2018) 
with R version 3.6.0 (R Core Team, 2019) to conduct eigenvector 
decomposition and created plots comparing principal components 
(PCs). We used clustering in NGSadmix to infer the “best” number of 
populations and estimate ancestry proportions. We ran NGSadmix 
five times each with population numbers (i.e., K values) ranging from 
one to six. We used the Evanno method implemented in CLUMPAK 
(Kopelman et al., 2015) to determine the best fit K value (accessed at 
http://clump ak.tau.ac.il/bestK.html).

2.6  |  Genetic variation and gene flow

To estimate nucleotide diversity, we first grouped samples into 
six regions (Figure 1a) based on geography and expansion history 
(Battey, 2019): Washington (WAS), Humboldt California (HUM), Bay 
Area California (BAY), Central Valley California (VAL), Pacific coast 
of southern California (PAC), and eastern expansion samples (EAS). 
Since the number of samples can affect estimates of genetic diver-
sity, we downsampled each population to the lowest sample size 
(N = 13) by randomly selecting that number of individuals from each 
population for downstream calculations. A folded site frequency 
spectrum (SFS) was generated for each downsampled population by 
generating a site allele frequency file using ANGSD (for parameter 
details see Table S1) from which an SFS is estimated using realSFS 
- fold (Nielsen et al., 2012). Finally, each SFS was used as a prior (−
pest) to estimate diversity statistics (- doTheta) in ANGSD. We es-
timated pairwise divergence between samples grouped by county 
for counties that had at least five individuals using ANGSD (for pa-
rameter details see Table S1) and realSFS (fst stats) on polymorphic 

sites. We estimated global heterozygosity per individual for 5– 10 
individuals per county (Table S2) using ANGSD (for parameter de-
tails see Table S1) and realSFS (parameters: - fold 1) to create site 
frequency spectra. Here we are using county as a proxy for geo-
graphic proximity. To assess the direction of gene flow among the 
defined populations we calculated a directionality index, ψ (Peter & 
Slatkin, 2013). First, we created pairwise 2D SFSs using the site allele 
frequency files created for each population SFS. Then we calculated 
ψ using equation 1b from Peter and Slatkin (2013), which detects 
mismatches between pairwise site frequency spectra indicative of 
successive founder events and thus identifies geographic origins and 
directionality of expansions.

2.7  |  Selection

We tested for both local and species- wide genomic signals of selec-
tion associated with the recent range expansion in C. anna. We looked 
for potential genomic regions under selection in the expanded range 
using an FST outlier approach. FST outliers are a common metric for 
identifying selection. Peaks of significantly different allele frequen-
cies between populations at close loci are often an indication of po-
tential selection (Domyan et al., 2016; Vickrey et al., 2018). In this 
case, we compared the northern (WAS) and eastern (EAS) expan-
sion regions to their nearest native range regions, Central California 
(BAY) and Southern California (PAC), respectively. We used the pFst 
tool (Kronenberg, 2014) in VCFlib (https://github.com/vcfli b/vcflib) 
after creating a BCF file using ANGSD (−dobcf) and converting it to 
a VCF file with BCFtools accessed through Samtools. The pFST tool 
uses a likelihood ratio test to detect allele frequency differences be-
tween populations.

While the expectation for the magnitude and direction of gene 
flow is unknown in C. anna, largely due to enigmatic movement pat-
terns, a previous study suggested high gene flow between three 
California populations (Engeln, 2013). Another California humming-
bird, Allen's Hummingbird (S. sasin), was found to have high gene 
flow among the mainland populations (Myers et al., 2021), poten-
tially indicative of high overall levels of mobility in hummingbirds. If 
gene flow in C. anna is extremely high, we might expect signatures of 
selection caused by exposure to novel selective agents during range 
expansion to be present across the entire species rather than diver-
gent between populations. We used all samples to test for signatures 
of selective sweeps using SweeD version 3.2.1 (Pavlidis et al., 2013). 
Note that sweeps detected across the entire range could be the re-
sult of historical (pre- expansion) selection or recent selection. We 
first estimated minor allele frequencies at polymorphic sites using 
ANGSD (for parameter details see Table S1). We converted these 
into the required allele count input for SweeD by multiplying the 
minor allele frequency by the number of individuals sequenced for 
each site and rounding to the nearest integer. All sites were consid-
ered folded. We ran SweeD separately for each chromosome, with a 
grid equal to the length of the chromosome divided by 5000 (so that 
we tested every 5 kb).
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3  |  RESULTS

3.1  |  Species identification

We used Sanger sequencing to identify C. anna from a set of 32 un-
known nestlings and fledglings using 30 individuals of known species 
identity for comparison. We removed 14 of the 62 ND2 sequences 
due to low quality or short sequence length, including 10 samples of 
unknown species. Within known samples, C. anna samples formed 
a monophyletic group allowing us to reliably identify other C. anna 
in our unknown samples (Figure S1). Of the 22 remaining unknown 
hummingbird samples, 18 were identified as C. anna (Figure S1) and 
nine of those had location data and were therefore used for whole 
genome sequencing.

3.2  |  Whole genome sequencing

We received no data for one sample and despite being sequenced 
across two lanes we received only one demultiplexed fastq file for 
two samples, both of which were in sequencing pool ANHU_003. 
Across 283 individuals, our sequencing runs produced 5.4 billion 
short reads with more than 99% of samples having 90% or more 
of reads with a quality score of Q >30. On average, 98.3% of the 
sequence reads mapped to the reference genome per individual, and 
individual coverage ranged from 0× to 4.7× with an average of 2.2×. 
We removed individuals (N = 35) from the data set that exhibited any 
of the following: samples that failed to sequence, indicated by a very 
low number of raw reads (<1000), samples that mapped poorly to 
the reference genome (<50%), and samples that had low individual 
coverage (<1.0×). We also removed five outliers in an initial PCA, 
which we believe may have been misidentified based on a prelimi-
nary PCA that included other co- occurring hummingbird species 
(Figure S2). We removed samples that either grouped with the other 
species or fell in between two species in the preliminary PCA. We 
identified two pairs of potentially related individuals and removed 
one individual from each pair. The remaining 241 individuals had on 
average 98.7% of the sequence reads mapped to the reference ge-
nome, and their coverage ranged from 1.0× to 4.45× with an average 
of 2.5×. The number of loci used for analyses ranged from 22,902 
for the PCA (SNPs present in all individuals) to 934,225,517 (all base 
pairs with sufficient coverage) to calculate theta (Table S3).

3.3  |  High gene flow across the range

We found no evidence of barriers to gene flow across the native 
and expanded range of C. anna. Overall, genetic divergence was low 
species- wide, with pairwise county divergence (FST) ranging from 
0– 0.01 (Figure S3). We detected no pattern of isolation by distance 
in pairwise FST between counties (Figure 1b; Mantel test p = .53). The 
admixture analyses showed no population structure; inferred ances-
tral groups were evenly represented across geography. Although the 

optimal number of ancestral groups was K = 2 (Figure 1c), there was 
no clear geographic structuring at either K = 2 or higher values of K 
(Figure S4), suggesting only one major genetic group with no barriers 
to gene flow. We found no geographic signal based on the first three 
principal components axes although none of the PCs explained much 
more than 1% of the variance (Figure 1d). There was a correlation be-
tween sequencing pool and PC1 (Figure S5A), although it explained 
only a small amount of the variance similar to the other PCs, potentially 
highlighting the absence of other factors structuring genetic variation 
across the range but also reinforcing the need for consideration of se-
quencing artefacts in next- generation sequencing. To investigate if a 
larger SNP data set would clarify any population structure, we reran 
the PCA with more permissive filtering (- minInd 49, instead of - minInd 
241 (all individuals)), which resulted in 9.5 million SNPs. The result-
ing PCA did not indicate spatial structuring, consistent with the result 
from the PCA with fewer SNPs (Figure S5B). We also conducted a PCA 
with only females collected between February and April (N = 72, after 
PCA outliers were removed) to ensure only breeding birds were exam-
ined, which also showed no genetic structure (Figure S5C).

3.4  |  Evidence for a species core

Despite the lack of population structure, we did find expected core- 
edge patterns of genetic diversity. We found higher nucleotide diver-
sity (pairwise theta) in regions in the native range compared to the 
expanded ranges (Figure 3a), consistent with classic core- edge expec-
tations, though the magnitude of these differences is small. The Pacific 
Coast region, in the native range, had the highest average nucleotide 
diversity at 1.88 × 10−3 while the eastern and Washington state ex-
panded regions had the lowest values at 1.74 × 10−3 and 1.77 × 10−3, 
respectively. In pairwise tests, all regions were significantly different 
(multiple test- corrected Kruskal- Wallis p < .001). Decreased diversity 
in the expanded regions did not appear to be driven by increased 
relatedness among sampled individuals (Figure S6A). However, 
some counties in the northern and eastern expanded regions ap-
peared to have lower heterozygosity, which could contribute to the 
observed pattern (Figure S6B). The directionality index, ψ, was low 
(absolute value <0.05) in all pairwise comparisons across the six re-
gions (Table S4). This result is far lower than the cutoff of |ψ| > 3 used 
by Peter and Slatkin (2013, 2015) and those seen in other studies 
using this method (Bors et al., 2019; Puckett & Munshi- South, 2019; 
Streicher et al., 2016; Zhan et al., 2014). While the direction of ψ might 
suggest that the San Francisco Bay Area and the California Central 
Valley regions are sources of gene flow and Washington state in the 
expanded range is a majority sink of gene flow (Figure S7), the nonsig-
nificant test statistics are consistent with our high levels of gene flow.

3.5  |  No evidence of selection

We found no evidence for either local adaptation (comparing na-
tive and expanded ranges) or global selection (across all samples) 
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that might be linked to the range expansion. For local adaptation 
we used FST to compare the expanded regions (Washington state 
and the eastern populations) to their nearest native range region (the 
Bay Area of California and the Pacific coast of southern California), 
but no obvious peaks stood out for either comparison (Figure 2a,b). 
Chromosomal mean pFSTs were p = 0.7 ± 0.2 and no SNPs were sig-
nificant after Bonferroni or false discovery rate corrections. Based 
on the most significant 1% of p- values from pFST, we found 6079 
SNPs that were shared between the two expanded region com-
parisons, only slightly higher than the expected number of high FST 
shared SNPs (5599 SNPs). An alternative to divergence due to spa-
tially varying selection is that with high gene flow homogenizing ge-
netic diversity, selection in the expanded range would affect allele 
frequencies in the entire species. However, we also found no evi-
dence of selective sweeps when analysing the site frequency spec-
trum generated from all samples (Figure 2c). In fact, the composite 
likelihood ratio (CLR) statistics representing the test for selective 
sweeps were all below 2.0, much lower than cutoffs found in many 
studies (Brand et al., 2020; Frantz et al., 2015; Jones et al., 2018; 
Laurent et al., 2016; Pavlidis et al., 2013).

4  |  DISCUSSION

The redistribution of species globally has ignited interest in and ur-
gency for understanding eco- evolutionary dynamics of range shifts 
(Miller et al., 2020; Parmesan, 2006; Sexton et al., 2009). In the well- 
documented contemporary range expansion in C. anna, we show 
patterns largely consistent with expectations of a “pushed wave” ex-
pansion; gene flow is high throughout the entire range, and we find 
no strong divergence in allele frequencies between the core of the 
range and expansion fronts. We do find reduced genetic diversity 
at expansion fronts, which is characteristic of pulled waves, but the 
magnitude of the reduction in genetic diversity is small. The lack of 
selective signals could support the previous hypothesis that the ex-
panded range was within the historical climate niche, so adaptation 

was not required during expansion. Alternatively, the absence of sig-
nificant selection could be the result of technical limitations, includ-
ing limited samples sizes for genome scans and the recent nature 
of the expansion. Together our evidence highlights the complexity of 
rapid range shifts in natural populations and potential limitations of 
genomic data in investigating ecoevolutionary phenomena.

Evidenced by low species- wide genetic divergence and a lack of 
spatial structuring, we show that C. anna has few, if any, limits to 
gene flow (Figure 1; Figure S3). These results support a previous ge-
netic study in C. anna that found no genetic structure among three 
California populations using mitochondrial DNA (Engeln, 2013). The 
preservation of genetic diversity across the expanded ranges is con-
sistent with recent, rapid range expansions characterized by a short 
time frame, growing population sizes, and multiple independent 
expansion fronts, all of which characterize the C. anna expansion 
(Battey, 2019; Greig et al., 2017; Zimmerman, 1973). While the extent 
of seasonal movement varies by population (Clark & Russell, 2012), 
C. anna has a broad diet, relatively large territories, and some sea-
sonal migration (Hazlehurst et al., 2021; Ortiz- Crespo, 1980; van 
Rossem, 1945; Yeaton & Laughrin, 1976), all of which could contribute 
to high gene flow in this system. Long- distance dispersal, especially 
from the core, has been shown to preserve genetic diversity in other 
taxa (Berthouly- Salazar et al., 2013). This result is often seen in highly 
mobile species and recent invasions. Examples of high gene flow 
within species in newly colonized territories include invasive Indo- 
Pacific lionfish (Pterois volitans) in the Caribbean (Bors et al., 2019) 
and European starlings (Sturnus vulgaris) in South Africa and North 
America (Berthouly- Salazar et al., 2013; Hofmeister et al., 2021). The 
similarities with colonizing species expansions (e.g., propagule and 
dispersal pressure, novel biotic and abiotic interactions) underscore 
the emerging work viewing range shifts and expansions of native 
species, especially those caused by climate change, through the lens 
of invasion biology (Wallingford et al., 2020).

Range expansions often expose species to novel environments 
containing new combinations of biotic and abiotic interactions 
that can coincide with niche shifts, expansions, or unfilling (Davies 

F I G U R E  2  (a,b) Significance values (−log10 p- values) from the likelihood ratio test to detect allele frequency differences between WAS 
and BAY (a) and between PAC and EAS (b) regions plotted across the genome. The red dashed line is a 0.0001 significance threshold. There 
were no significant SNPs after Bonferroni or false discovery rate corrections. (c) Selection likelihood values resulting from the selective sweep 
analysis plotted across the genome. Chromosomes are numbered along the x- axis. [Colour figure can be viewed at wileyonlinelibrary.com]

 1365294x, 2023, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ec.16928 by C
olorado State U

niversity, W
iley O

nline L
ibrary on [14/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.wileyonlinelibrary.com


3096  |    ADAMS et al.

et al., 2019; Strubbe et al., 2013). Previous modelling showed that 
the expanded regions fell within C. anna's fundamental climatic niche 
prior to the range expansion, suggesting that previous range limits 
were defined by the presence of resources (Battey, 2019). In this 
case, where the geographical limit of the fundamental niche is ex-
panded by the addition of resources, selection would not necessarily 
be required during range expansion. In our data, we do not uncover 
signals of selection at the range fronts (Figure 2). Although it is pos-
sible that selection was overlooked due to the limitations of genome 
scans (see below), the lack of selective signatures between the core 
and expanded ranges identified here aligns with the previous hy-
pothesis that the range expansion in C. anna could be the result of an 
ecological release facilitated by human- mediated landscapes. This 
hypothesis states that introduced plants and supplemental feed-
ing have allowed C. anna to fill out its existing climate niche even 
in the expanded regions (Battey, 2019; Zimmerman, 1973). While 
other ecological factors induced by urbanization and climate change 
could also be aiding the expansion, a similar pattern of spatial ex-
pansion and ecological release associated with supplemental feed-
ing has been documented in Eurasian Blackcap warbler (Plummer 
et al., 2015). Together, these studies provide evidence for the role of 
local anthropogenic alterations of the landscape shaping broadscale 
shifts in species' ranges.

An alternative explanation for the lack of genetic divergence be-
tween the native and expanded ranges is that gene flow from the 
core is swamping genomic signals of adaptation. High gene flow 
can be maladaptive at the expansion edge (Haldane, 1956) and in-
hibited selection during pushed wave expansions often slows and/
or prevents further range expansion (Barton, 2001; García- Ramos 
& Kirkpatrick, 1997; Miller et al., 2020). This pattern is seen in 
the southeastern invasion edge of cane toads in Australia where 
the range is thought to be limited by cold temperatures (Trumbo 
et al., 2016). Because we do see high gene flow between native and 
expanded range populations (Figure 1; Figure S3), it is possible that 
the influx of alleles from the range core inhibits adaptation at the 
range edge. However, observational data does not suggest that the 
range expansion in C. anna is slowing; new breeding populations 
in the north and west of the range have been observed in recent 
years. Recently, a growing breeding population of C. anna has been 
found in Idaho (Pollock et al., 2021), an area predicted to be suit-
able for C. anna (Battey, 2019). Southeast Washington state and 
sections of Utah are also predicted to have suitable habitat for C. 
anna (Battey, 2019), potentially suggesting that the expansion will 
continue in the coming decades. Our observations add to the grow-
ing literature suggesting that gene flow does not necessarily limit 
species ranges or their range expansions (Kottler et al., 2021).

Despite high gene flow and lack of genomic signatures of selec-
tion, we found very subtle evidence of classic core- edge patterns of 
genetic diversity. While we did not detect structure in the PCA or 
admixture analysis (Figure 1), we observed lower nucleotide diver-
sity at both expansion fronts (Figure 3). This result could indicate 
that mating is not random across the range despite high gene flow 
(Jiang et al., 2013). Increased relatedness among individuals due 

to small populations sizes could drive the decrease; however, this 
does not appear to be the cause in C. anna (Figure S6). Alternatively, 
lower population- level genetic diversity (theta) could be a result of 
decreased observed individual heterozygosity, which is what we ob-
served (Figure S6). The loss of heterozygosity at the expansion front 
could be caused by genetic drift, specifically in response to population 
bottlenecks or allele surfing (Goodsman et al., 2014) or by selective 
sweeps in the expanded ranges, although selective sweeps specific 
to the expansion front should cause allele frequency differences that 
could be detected by our FST scans. Relatedly, many of the northern 
expansion front samples were collected in earlier years (2000 vs. late 
2010s) which may represent a time point closer to a founding bot-
tleneck before more birds dispersed from the core, a pattern previ-
ously suggested in the invasive Indo- Pacific lionfish (Bors et al., 2019). 
However, this decrease of heterozygosity does not appear to be 
strong and consistent enough to result in signatures of divergence 
and selection between the range core and expansion fronts (Figure 2).

The seemingly contradicting observations of decreased genetic 
diversity in the absence of signals of selection or structure could 
have several biological or technical explanations. One possibility is 
that the expansion is too recent for the detection of significant di-
vergence in range edge populations and more differentiation may 
develop over time. Our range edge samples were collected over 
the past 30 years, with the earliest samples taken approximately 
three decades after the breeding range reached Washington. We 
therefore cannot rule out that selection is happening at the range 
edges, but not enough time has passed to shift allele frequencies 
that would be detected in the current study, especially in the face 
of high gene flow. Additionally, the presence of potentially suit-
able natural habitat in southern Nevada and northern Arizona and 
limited historical records could blur the delineation of the eastern 
expansion (Phillips, 1947; van Rossem, 1945; Zimmerman, 1973). If 

F I G U R E  3  Mean (middle line) and standard error (box) of 
pairwise theta (a genetic diversity measure calculated as tP/nSites) 
for each region. [Colour figure can be viewed at wileyonlinelibrary.
com]
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these regions are at the range edge, they might confer less novel 
selection pressure; however, southeastern Arizona would remain a 
novel selection environment. Further, our low- coverage approach 
and moderate sample size may not have the power to detect mul-
tiple small shifts in allele frequencies across loci that could lead to 
adaptive evolution, a common issue with genome- wide scans for 
polygenic traits (Kemper et al., 2014; Pritchard et al., 2010). Reduced 
diversity in the expanded regions could therefore reflect this weak 
genome- wide selection that was not detected at any single SNP. 
Alternatively, environment- mediated trait differences may be plas-
tic. For example, there is widespread use of torpor in Trochilidae 
and C. anna is no exception. In fact, C. anna were found to increase 
their use of torpor in cold temperatures (Spence et al., 2022; Spence 
& Tingley, 2021), which could conserve energy and aid in survival 
in the northern range expansion. However, we also know that cold 
snaps in the northern populations can still cause mortality so plas-
tic modifications alone may not be enough to maintain populations, 
especially during extreme events. Further investigation of trait vari-
ation, both genetic and plastic, across the range could aid in our un-
derstanding of the mechanisms facilitating expansion.

Anthropogenic influences are changing the genetic landscape 
through shifting species ranges (Chen et al., 2011; Parmesan, 2006). 
Much of the recent focus has been on the role of climate change in 
facilitating range shifts and the likely ecoevolutionary dynamics of 
these phenomena (Miller et al., 2020; Sexton et al., 2009). However, 
our study demonstrates that not all expanding species respond in 
predicted ways, in fact, not all human- induced range expansions 
show obvious signatures of evolution. Further studies are needed to 
confirm these results and test the stability of our conclusions over 
time. For example, using museum specimens to understand the ge-
netic landscape in C. anna before the expansions could confirm past 
gene flow or illuminate if increased urbanization is decreasing ge-
netic diversity, increasing homogenization, or shifting the frequency 
of certain alleles (Bi et al., 2019). Additionally, while we focused on 
the northern and eastern expansions, sampling individuals from 
what might be the “trailing edge” in Mexico would further our under-
standing of whether climate or resources are defining species range 
limits in C. anna. This study contributes to the growing literature on 
the consequences of human- mediated range expansions by adding 
empirical evidence that eco- evolutionary dynamics are not one- size 
fits all.
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