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Abstract
Technological advances in migratory tracking tools have revealed a remarkable diversity 
in migratory patterns. One such pattern is leapfrog migration, where individuals that 
breed further north migrate to locations further south. Here, we analyzed migration pat-
terns in the Painted Bunting (Passerina ciris) using a genetic-based approach. We started 
by mapping patterns of genetic variation across geographic space (called a genoscape) 
using 386 individuals from 25 populations across the breeding range. We then geno-
typed an additional 230 samples from 31 migration stopover locations and 178 samples 
from 16 wintering locations to map patterns of migratory connectivity. Our analyses of 
genetic variation across the breeding range show the existence of four genetically dis-
tinct groups within the species: Eastern, Southwestern, Louisiana, and Central groups. 
Subsequent assignment of migrating and wintering birds to genetic groups illustrated 
that birds from the Central group migrated during the fall via western Mexico or south-
ern Texas, spent the winter from northeastern Mexico to Panama, and migrated north 
via the Gulf Coast of Mexico. While Louisiana birds overlapped with Central birds on 
their spring migratory routes along the Gulf Coast, we found that Louisiana birds had 
a more restricted wintering distribution in the Yucatan Peninsula and Central America. 
Further estimation of the straight-line distance from the predicted breeding location to 
the wintering location revealed that individuals sampled at lower winter latitudes trave-
led to greater distances (i.e., the predicted breeding area was further north; p > .001), 
confirming that these species exhibit a leapfrog migration pattern. Overall, these results 
demonstrate the utility of a genoscape-based approach for identifying range-wide pat-
terns of migratory connectivity such as leapfrog migration with a high degree of clarity.
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1  |  INTRODUC TION

Long-distance migration allows birds to exploit resources differently 
across time and space and is one of their most intriguing behaviors. 
The assumption is that migration occurs because the conditions in 
the breeding range become adverse, and species move to regions 
where conditions are more favorable, and food is more abundant 
(Newton, 2008). Long-distance migration patterns are varied across 
species depending on competition and resource availability across 
the annual cycle (Alerstam,  2003). Migratory connectivity de-
scribes the spatial and temporal links of individuals and populations 
between the seasons that result from the migratory movements 
carried out by organisms. Sometimes patterns of migratory connec-
tivity are strong, in which case individuals from the same breeding 
population migrate to similar wintering regions, while sometimes mi-
gratory connectivity is weak, in which case individuals from similar 
breeding populations mix on their wintering grounds (Webster et al., 
2002). Quantifying patterns of migration across the annual cycle is 
important not only for increasing our understanding of the ecology 
and evolution of migratory species (Winger et al., 2018; Winger & 
Pegan, 2021) but can help inform full life cycle conservation efforts 
for populations that are experiencing declines (Webster et al., 2002).

One classic pattern of migration, which has been described, 
but only rarely documented with clarity, is leapfrog migration. This 
occurs when the most northerly breeding populations of a species 
winter the furthest south, while the populations that breed further 
south migrate a shorter distance to winter (Welty, 1982). As a re-
sult, most northerly breeding populations “jump over” these middle-
latitude populations during their migration (Figure 1). By contrast, 
the chain migration pattern occurs when the most northerly 

breeding populations winter migrate in the northernmost part of the 
winter range with the southernmost breeding populations winter 
further south (Figure  1; Fort et al., 2012). There are several clas-
sic examples of leapfrog migration across different species of birds, 
including Fox Sparrows, Wagtails, and Eastern Golden eagles (e.g., 
Åkesson et al., 2012, 2020; Boland, 1990; Nelson et al., 2015; Ramos 
et al., 2015), but the ability to detect patterns of leapfrog migration 
can be limited by the need for methods that quantify migratory con-
nectivity across vast regions of the breeding and wintering range.

While in some cases improvements in tracking technology have 
increased our ability to detect leapfrog migration, in other cases, 
they have cast doubt on previous work. For example, direct mea-
surements of individual birds' migrations using light-level geoloca-
tors cast doubt on what is perhaps one of the most well-documented 
cases of the leapfrog migration in nature (Fraser et al., 2018)—that 
of Fox Sparrow's breeding along the Pacific Coast of North America 
(Bell, 1997; Swarth, 1920). Early hypotheses proposed that leapfrog 
migration in the Fox Sparrow resulted from greater to access to re-
sources in northern breeding sites outweighing the costs of longer 
migratory journeys to more southernly wintering locations. This 
hypothesis was supported by evidence of greater fat loads in more 
northerly breeding populations (Alaska) and lower fat loads in the 
populations that migrate shorter distances (Bell,  1997). However, 
geolocator tracks of northern and southern wintering populations of 
the Sooty Fox Sparrow (Passerella ilica unalaschcensis), did not sup-
port the leapfrog pattern. In contrast to expectations, individuals 
wintering further south overlapped on the breeding grounds with 
individuals that wintered further north and there was unexpectedly 
high degree of mixing between the two wintering ranges (Fraser 
et al., 2018). Thus, while patterns of leapfrog migration have been 

F I G U R E  1 Typical migration patterns. (a) Leapfrog migration pattern. (b) Chain migration pattern.
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documented previously, there is a need for studies that can be used 
to comprehensively assess the frequency of this pattern in other mi-
gratory species.

A genetic framework that investigates migratory connectivity 
across the full annual cycle in 100–1000 of individuals has some 
advantages to studies that can provide highly detailed tracking 
information in one or two focused areas. The implementation of 
genetic methods often starts with the construction of a genos-
cape—a map of genetic variation across geographic space (sensu 
Ruegg et al., 2014)—which can be used as a baseline for assigning 
individuals from across the annual cycle back to their most likely 
breeding region. Once the genoscape has been constructed, 
genetic assays can be developed for specific SNPs allowing 
high-throughput amplification of DNA even when it is highly 
fragmented or when only a small amount of DNA is available, as 
is often the case when DNA is obtained from feathers. The result-
ing genetic assays can be used to screen 100–1000 of individuals 
from outside of the breeding range, allowing for a comprehen-
sive assessment of broadscale migratory connectivity patterns 
if sufficient samples are available. A genoscape-based approach 
not only has the advantage of being able to comprehensively as-
sess migratory patterns but can help with defining Conservation 
Units, which assists with the downstream management of a spe-
cies across its full annual cycle.

The Painted Bunting is a migrant species that breeds in 
central and southeastern North America (Lowther et al., 2020; 
Tonra & Reudink, 2018) and winters from northwestern Mexico 
to Central America. Within the species, there are two recognized 
allopatric subspecies showing different molting and migratory 
strategies (Lowther et al., 2020; Thompson, 1991). The eastern 
subspecies (ciris) are distributed from North Carolina to Florida. 
The western subspecies (pallidor) has a distribution area that is 
25 times larger than the eastern subspecies, which ranges from 
northeastern Mexico (Tamaulipas, Nuevo León, and Coahuila) 
to central Texas, southeast Kansas, east to west Tennessee, 
Mississippi and Oklahoma (Sharp, 2021). Recent population ge-
netic structure studies have consistently revealed three popula-
tions based on the breeding range: one in North Carolina, South 
Carolina, Florida, and Georgia (Eastern breeding population), 
a second in Mississippi, Louisiana, Eastern and Central Texas 
(Central breeding population), and a third in Western Texas, 
Oklahoma and Arkansas (Western breeding population; Battey 
et al., 2018; Contina et al., 2019). Although the species has been 
well studied in most of its breeding range (i.e., the part of its 
range that falls within the USA), the genetic contributions of 
the Western breeding populations in northeastern Mexico have 
been neglected.

In this study, we used a genetic approach to investigate migra-
tion patterns in the Painted Bunting across time and space. We 
first combined RAD-sequencing data (Contina et al., 2023) with 
targeted SNP genotyping data from 386 birds across the breed-
ing range to create a breeding genoscape for the species. We then 
used SNP assays to genotype an additional 178 individuals from 16 

wintering locations and 230 individuals from 31 stopover locations 
to assign each individual to distinct breeding genetic clusters and 
track the movement patterns in Painted Buntings across time and 
space. Finally, we used these combined data to explore migratory 
patterns in the Western breeding population and assess the poten-
tial for leapfrog migration.

2  |  METHODS AND MATERIAL S

2.1  |  Sample collection and DNA extraction

We compiled a collection of 794 Painted Bunting blood and feather 
samples (see full metadata for samples in Table S1. Field collections 
permit from Instituto Nacional de Ecologia, SEMARNAT, Mexico 
were FAUT-0169 and SGPS/DGVS/01595) provided by the Bird 
Genoscape project (https://www.birdg​enosc​ape.org), collaborators 
from universities in Latin American countries, the Institute for Bird 
Populations, and independent banding stations. One hundred and 
twenty-six individuals from 13 populations were previously used to 
test for genome-wide population structure (Contina et al.,  2017). 
In comparison, an additional 260 individuals spanning 25 breed-
ing populations (12 new populations) were used to fill in sampling 
gaps and re-assess the population structure. All samples were ex-
tracted using QIAGEN DNeasy Blood and Tissue Kits (San Francisco, 
CA). Blood extractions were further quantified using Qubit dsDNA 
HS157 Assay kits (ThermoFisher Scientific) and visually inspected 
via gel electrophoresis.

2.2  |  SNP-type assay design and feather screening

From initial genome-wide RAD-sequencing for the Painted Bunting 
(see methods within Contina et al., 2017), we used vcftools (Danecek 
et al.,  2011) to identify highly divergent SNPs that can be used 
to diagnose the four major genetic clusters identified in previ-
ous population genomic analyses (Contina et al.,  2017). We used 
custom R scripts to create low-cost SNP-type assays from these 
initial divergent variants list. We used the R package snps2assays 
(Anderson, 2017) to evaluate which top-ranking SNPs would gen-
erate designable assays for each genetic group. We characterized 
primers as designable if GC content was <0.65, there were no inser-
tions or deletions (indels) within 30 bp, and there were no additional 
variants within 20 bp of the targeted variable site. Additionally, we 
aligned 25 bp surrounding the target variable site to the genome 
using bwa (Burrows-Wheeler Aligner; Li & Durbin, 2009) to deter-
mine whether the designable primers mapped uniquely to the ref-
erence genome of a closely related relative, the Medium Ground 
finch, Geospiza fortis (Parker et al., 2012; NCBI Assembly ID: 402638 
(GeoFor_1.0)), and to filter out those that mapped to multiple loca-
tions. We used this subset of primers to develop a SNP-type assay 
(Fluidigm Inc.) that was used to screen 260 additional breeding indi-
viduals from across the breeding range and 408 individuals collected 
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from wintering and migratory stopover sites for assignment to the 
breeding population of origin. Our wintering ground sampling in the 
west was exhaustive and ranged from northern Mexico to Costa 
Rica; however, our sampling did not include wintering sites in the 
east where the Eastern birds are known to overwinter (i.e., south 
Florida, the Bahamas, or Cuba; Robertson & Woolfenden,  1992; 
Raffaele et al., 1998; Rushing et al., 2021).

To screen the 66 designable assays of highly divergent vari-
ants, genotyping was performed on the FluidigmTM 96.96 IFC 
controller. We used the Juno GT Preamp Master Mix (Fluidigm, 
Item #100-8363) for the preamplification of the SNPs and the 
Juno GT Preamp Master Mix for the final amplification. For each 
run, we screened 94 individuals and two nontemplate controls. 
We imaged the results on an EP1 Array Reader and called al-
leles using Fluidigm's automated Genotyping Analysis Software 
(Fluidigm Inc.) with a confidence threshold of 90%. In addition, 
we visually inspected all SNP calls and removed any calls that did 
not fall clearly into one of three clusters (heterozygote or either 
homozygote cluster). As DNA quality can affect call accuracy, 
we employed a stringent quality filter and dropped variants with 
missing calls exceeding 20%.

2.3  |  Genetic screening and building the genoscape

To create a genoscape with the best quality data, we filtered out 
samples with high values of relatedness to eliminate closely related 
samples from further analyses. To do this, we conducted a kinship 
analysis by formatting our whole genome data in the PLINK package 
(Purcell et al., 2007) for analysis with the KING toolset (Manichaikul 
et al., 2010). KING facilitates the assessment of genome-wide paired 
associations or familiar relationships of large datasets. We excluded 
parents-offspring (kinship value ~0.4) and first-degree relatives 
(>0.18).

To assess the number of population clusters across the breed-
ing range of each species, we used the Evanno method (Evanno 
et al., 2005) to determine the optimal number of genetic clusters 
identified using STRUCTURE (version 2.3.4; Pritchard et al., 2000). 
Although model-based approaches describe continuous patterns of 
variation using discrete clusters, and may therefore overestimate the 
number of discrete clusters present, they are useful for addressing 
our overarching objective of describing the maximum number of 
genetically unique groups. Therefore, we implemented the locprior 
model, in which sampling populations are set to a specific distinct 
genetic cluster a priori. We ran 5 iterations of each assumed num-
ber of genetic clusters (K), where K ranged from 1 to 5 (Pritchard 
et al.,  2000) and summarized the posterior probability of group 
membership estimates from the best structure run.

To create the Painted Bunting genoscape based on our highly 
divergent SNP-type assays, we visualized the posterior probabil-
ity of group membership estimates from STRUCTURE (Pritchard 
et al., 2000) as transparency levels of different colors overlaid on a 
base map from Natural Earth (natur​alear​thdata.com) and clipped to 

the Painted Bunting breeding range using the latest eBird shapefile 
(eBird, 2021) using the R packages sp, RGDAL, and raster (Bivand 
et al., 2013, 2017; Hijmans, 2019). We scaled the transparency of 
colors within each distinguishable group so that the highest poste-
rior probability of membership in the group according to the struc-
ture was opaque and the smallest was transparent.

2.4  |  Baseline distinct genetic groups and 
accuracy of assignment

We evaluated the accuracy of individual assignments to each of 
the genetically distinct groups identified in the genoscape using 
self-assessment testing in rubias (Moran & Anderson,  2018), a 
Bayesian hierarchical genetic identification approach that ac-
counts for population structure and differences in the number of 
populations. The self-assessment function in rubias tests the accu-
racy of assignment in terms of the proportion of individuals from 
known genetically distinct breeding groups that are assigned back 
to the correct breeding group. We considered a robust assignment 
as >0.8 posterior probability of assignment to the inferred group. 
We considered assignments with a posterior probability of <0.8 as 
uncertain and removed those individuals from the final reporting. 
Thus, reported misassignments refer to significant assignments in 
the wrong collection.

2.5  |  Assignment of unknown migratory and 
wintering birds

To determine the breeding origin of migrating and wintering birds, we 
utilized two methods. First, we assigned individuals collected from 
wintering and migratory stopover locations (i.e., whose breeding lo-
cation was unknown—hereafter, “unknown” birds) to the genetically 
distinct groups characterized by the final genoscape using rubias 
(Moran & Anderson, 2018). We defined the unknown birds first by 
the mixture collection that corresponded to the location where they 
were collected and treated it as a separate sample group that gets its 
own mixing proportion estimate, and then by combining all unknown 
birds into one “mixture” category. Migratory and wintering individu-
als with a probability of assignment to a distinct genetic group >0.8 
are reported. To provide a more fine-scale estimate of breeding loca-
tion compared with assignment to a distinct genetic cluster that can 
encompass a large geographic space, we subsequently estimated the 
geographic origin of individuals based on their genetic backgrounds 
using the R package OriGen (Ranola et al., 2014). The OriGen model 
divides the region of interest into pixels; in this case, the Painted 
Bunting breeding range generates allele frequency surfaces for each 
SNP and then applies Bayes' rule to compute the posterior probabili-
ties to localize the origin of a given individual (Ranola et al., 2014). 
The pixel with the highest posterior probability is inferred to be the 
predicted geographic location of an individual. We then used the R 
program geosphere (v1.5-10, Hijmans, 2019) to calculate the distance 
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between the predicted breeding location and the known sampling 
location of wintering individuals.

3  |  RESULTS

3.1  |  Painted bunting population structure

Our STRUCTURE analysis of 386 samples from 25 populations across 
the breeding range showed that the breeding populations could be 
robustly divided into four genetically distinct groups: an eastern 
cluster represented by sampling in North Carolina, Georgia, and 
Florida, a southwest genetic cluster (Big Bend, TX), a coastal south-
central cluster in Louisiana, and a central cluster that ranges from 
an isolated New Mexico population to eastern Arkansas (Figure 2; 
Figure S1). Not surprisingly, the sampling locations that were most 
genetically distinct (i.e., did not demonstrate admixed ancestry with 
surrounding populations) were also the most geographically distant 
from each other: Big Bend (southwestern Texas) and the eastern 
populations, including Bald Head Island (North Carolina), Isle of 
Hope (Georgia), and Ormond Beach (Florida). In general, genetic dis-
tinctness increased with geographic distance throughout the sam-
pled range, except for locations in Louisiana, which, despite being 
close to other sampling locations, had a very well-differentiated ge-
netic structure (Figure 2).

3.2  |  Breeding origin of migratory and 
wintering birds

Most birds captured outside the breeding season were assigned to 
the Central group (Figure 2). Ultimately, birds from the Central group 
migrate during the fall to western Mexico or southern Texas, winter 
in central and southern Mexico and Central America, and migrate 
back to their breeding grounds via the coastal plains of the Gulf of 
Mexico. The birds assigned to the Louisiana group were found to 
winter in the Yucatan Peninsula and Central America and migrate 
north during the spring along the coastal plains of the Gulf of Mexico 
(Figure 2). Of the birds sampled in the East, we were only able to 
sample birds during the spring and fall migration period, and all were 
assigned to the Eastern genetically distinct population (Figure  2). 
Unexpectedly, none of the individuals captured outside the breed-
ing season were assigned to the Southwestern group, suggest-
ing that either we did not sample where these birds winter or our 
primers could not distinguish the Central and Southwestern genetic 
cluster fully. The former is more likely given we demonstrate clear 
admixture between the Southwestern and Central genetic groups 
(Figure 2), and three birds collected from the Southwest breeding 
cluster were misassigned to the Central genetic cluster (Table S2). 
It is important to note that Big Bend, TX, the only population with 
nearly 100% Southwest ancestry, is isolated in the sky island of the 
Chisos Mountains (Heald, 1951; MacCormack et al., 2008). By con-
trast, the two populations closest to Big Bend, are on the eastern 

edge of these mountains and have mixed ancestry, suggesting these 
mountains represent a significant barrier to gene flow. Thus, the un-
derlying admixture might limit the ability to assign admixed south-
western birds, and the location of the wintering Big Bend population 
remains unsampled.

The predicted breeding location of wintering individuals sup-
ports the population assignments for the most part, as most win-
tering birds had predicted locations within the distribution of the 
Central genetic group (Figure  3). However, birds wintering on the 
Yucatan Peninsula had predicted breeding locations that included 
Louisiana and northern Florida, eastern Texas, Oklahoma, and 
Arkansas. Surprisingly, birds wintering in Costa Rica (the location 
with the most samples) predicted breeding locations from three ge-
netically distinct groups, contrary to the genetic breeding unit as-
signment, which assigned all birds but one that winters in Costa Rica 
to the Central genetic cluster. Approximately 80% of the birds were 
predicted to be from the Central breeding group, followed by the 
Southwestern breeding group, and three individuals were assigned 
to the Eastern breeding population.

Lastly, to better understand the observed migratory patterns in 
space, we estimated the straight-line distance from the predicted 
breeding location to the wintering location of each individual. If 
Painted Buntings exhibit a leapfrog migration pattern, we would 
expect birds further north traveling to winter further south, thus 
traveling greater migration distances. Here we found that, indeed, 
individuals sampled at lower winter latitudes traveled greater dis-
tances (i.e., the predicted breeding area was further north; p > .001; 
Figure 4).

4  |  DISCUSSION

The ability to comprehensively characterize movement patterns in 
birds across time and space has been limited by technological ap-
proaches that allow for data collection from 100 of individuals. 
Here, we use a genoscape approach to identify genetically distinct 
groups within the species and then use the same genetic informa-
tion to characterize migratory movements. Overall, the breeding 
genoscape supports the existence of four main groups within the 
species: Eastern, Southwestern, Central, and Louisiana (Figure  2). 
When genetic markers are further used to track the movement pat-
tern of individual birds, we find strong support for the existence of a 
“Leapfrog” migration pattern.

4.1  |  Migratory connectivity in the Painted Bunting

Our results show that the Painted Bunting can be separated 
into four distinct genetic breeding populations—a Central, East 
Coast, Louisiana, and Southwest genetic group—rather than the 
three previously described by Battey et al.  (2018) and Contina 
et al. (2019). The additional genetic structure detected here likely 
resulted from increased sampling density and an increase in the 
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number of genetic markers used (over 10-fold more than in Battey 
et al.,  2018). Similar to Contina et al.  (2019), we found two ge-
netically distinct main groups that match the previously described 
subspecies—the eastern breeding populations, P. c. ciris, and the 
interior breeding populations, P. c. pallidior (Lowther et al., 2020). 
However, unlike previous studies, we found additional population 
structure within the Interior subspecies (e.g. Southwest, Louisiana, 
and Central). Further analysis of wintering samples across Mexico 
and parts of Central America identified a high degree of mixing 
between genetic groups within the Interior subspecies but no East 
Coast individuals. When our results are compared with recent con-
nectivity work focused on the Eastern subspecies using light-level 

geolocators (Sharp, 2021, Rushing et al., 2021), it becomes clear 
that the absence of East Coast individuals in our wintering sam-
ples is because they primarily winter in Cuba. Alternatively, our 
analysis of Spring and Fall migrants revealed that Central and 
Louisiana breeders overlap during spring along the Gulf Coast 
but only Central breeders migrate to western Mexico first before 
migrating south in the Fall. The presence of Central breeders in 
western Mexico that molt-migration—a behavior where individu-
als first migrate to southern monsoon areas (Nayarit, Jalisco) to 
complete their molt before migrating further south to wintering 
areas (Contina et al., 2013)—may be unique to the Central group. 
Overall, our results suggest that migratory connectivity is strong 

F I G U R E  2 Top: Q matrix calculated from locprior model in STRUCTURE (K = 4). Orange depicts the Southwestern genetic group, blue 
depicts the Central genetic group, yellow depicts the Louisiana genetic group, and purple depicts the Eastern genetic group. Bottom: 
Breeding genoscape and assignment of migrant and wintering individuals of the Painted Bunting. Capital letters refer to the sampling 
locations from Table S1 on the breeding ground, and the transparent gray represents the wintering range.

 20457758, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9769, W

iley O
nline L

ibrary on [07/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  7 of 10RUEDA-­HERNÁNDEZ et al.

between the Eastern and Interior subspecies groups but weaker 
within genetically distinct groups within the Interior subspecies.

The division between Eastern and interior subspecies has been 
previously described based on morphological (Storer, 1951) and 
life-history differences (Pyle, 1997), as well as the species phy-
logeography (Herr et al.,  2011), which concluded that the two-
known subspecies evolved separately from one ancestral taxon, 
likely from the range occupied by the current Southwestern 
genetic group. Our results support those of Battey et al.  (2018) 
suggesting that the disjoint distribution, distinct migratory routes 

and overwintering locations (Sharp,  2021), and divergent molt-
ing strategies of Interior and Eastern breeding populations may 
be partially maintained by the existence of a migratory divide—
defined as a region of contact between population with diver-
gent migratory strategies. It is possible that the high cost of flying 
around or over the Gulf of Mexico results in fitness consequences 
for birds with intermediate migratory behavior, resulting in addi-
tional barriers to gene flow between the two forms. While fur-
ther study is needed, it is possible that these Eastern and Western 
forms represent cryptic species (Johnson & Marten, 1988; Linck 
et al., 2019). Regardless this and other work strongly suggest that 
the two subspecies represent distinct Conservation Units and 
should be managed separately.

In addition to further supporting the division between Interior 
and Eastern subspecies, we also found the Southwest genetic group 
to be genetically distinct from the remaining populations. To our 
knowledge, this is the first study to report such a finding. This is par-
ticularly relevant given that previous studies (Contina et al., 2013; 
Herr et al.,  2011) proposed that the current populations evolved 
in that area from a Mesoamerican ancestor and could explain why 
the inland western populations use a two-step migration to winter 
further south, from Southeast Mexico through northern Panama. 
We did not pick up any individuals of the Southwest group on their 
wintering grounds, so it is unclear the extent to which Southwest 
breeders winter in distinct or overlapping locations with the other 
Inland breeders, but the observed genetic differences within the 
Southwest warrant further investigation from a conservation and 
management perspective.

F I G U R E  3 Predicted breeding locations of wintering birds sampled in (a) Costa Rica, (b) El Salvador, and (c) Mexico. Line segment colors 
represent the assignment to the breeding unit from rubias and spans from where the individual was collected on the wintering ground to the 
predicted breeding geographic location estimated in OriGen.

F I G U R E  4 Correlation between predicted migration distance 
and predicted breeding latitude. Colors represent wintering 
locations.
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4.2  |  Leapfrog migration in the painted bunting

Perhaps the most striking result from our individual-level analysis 
of breeding origin was the highly significant relationship between 
migratory distance and wintering latitude in the west, indicative of 
leapfrog migration (Figure  4). A similar leapfrog pattern was also 
documented in the aforementioned geolocator study of the Eastern 
Painted Buntings. In this study, researchers demonstrated that a 
northern breeding population in North Carolina wintered further 
south in Cuba compared with southern breeding populations in 
Florida that were found equally in all nonbreeding ranges (e.g., south 
Florida, the Bahamas, and Cuba; Rushing et al., 2021; Sharp, 2021). 
This leapfrog migration has also been documented in other migra-
tory species, such as Gambel's White-crowned Sparrow (Lisovski 
et al., 2019) and more frequently in shorebirds (Boland, 1990; Kalejta 
& Hockey, 1994).

Suspected drivers of leapfrog migration include resource track-
ing, competition, and habitat quality (Newton, 2008). While reasons 
for the observed leapfrog patterns require further investigation, 
one idea is that they evolved as a means of reducing competition 
(Newton, 2008). Under the competition hypothesis, more-northern 
breeding individuals may skip overwintering areas already occupied 
by resident populations or earlier arriving more-southern breeders. 
In the Painted Bunting, southern breeders from the Central and 
Louisiana groups may leapfrog over sedentary species of the genus 
Passeria (P. leclancheri in central Mexico and P. rositae in southwest-
ern Mexico) in southwestern Mexico. Alternatively, leapfrog migra-
tion may be explained by variations in habitat quality at breeding 
and wintering location. Specifically, high-quality breeding habitats 
further north may support longer-distance migration, allowing birds 
to overwinter further south where they may also have greater ac-
cess to resources (Bell, 1997; McKinnon et al., 2015). The ability of 
individuals from the Central group to withstand longer migrations 
may be further supported by the molt-migration strategy that allows 
them to take advantage of resource pulses in western Mexico before 
migrating south. Finally, the fasting endurance hypothesis posits 
that individuals that experience harsher conditions at the breeding 
site may be driven to compensate for those harsh conditions by mi-
grating farther to reach highly favorable wintering conditions and 
in turn gain positive carryover to the breeding grounds (Chapman 
et al., 2011; Gow & Wiebe, 2014). Future work involving measuring 
fat loads and the quality of migrating individuals along their migra-
tory journey may help distinguish between the different hypotheses 
to explain leapfrog migration. Overall, our results suggest that the 
Painted Bunting represents one of the clearest and most compre-
hensively document examples of leapfrog migration in nature.

4.3  |  Conclusions

We demonstrate that genetic tools combined with intensive sam-
pling provide a powerful method for identifying range-wide patterns 
of genetic and migratory connectivity across the range. Evidence of 

four distinct genetic groups within the Painted Bunting, with par-
ticularly strong migratory connectivity between East Coast and 
Interior populations, adds to our understanding of how to manage 
these populations in a rapidly changing world. Moreover, the exist-
ence of leapfrog migration within the Interior populations adds to 
the growing body of literature suggesting that spatial and temporal 
variation in resource abundance likely helps explain broadscale pat-
terns of migratory connectivity. Future studies focused on testing 
hypotheses underlying the observed migratory patterns would fur-
ther contribute to our understanding of the ecological process at 
work.
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