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Abstract
Aim: Species persistence in the face of climate change depends on both ecological 
and evolutionary factors. Here, we integrate ecological and whole-genome sequenc-
ing data to describe how populations of an alpine specialist, the Brown-capped Rosy-
Finch (Leucosticte australis) may be impacted by climate change.
Location: Southern Rocky Mountains in North America.
Methods: We sampled 116 Brown-capped Rosy-Finches from 11 sampling locations 
across the breeding range. Using 429,442 genetic markers from whole-genome se-
quencing, we described population genetic structure and identified a subset of 436 
genomic variants associated with environmental data. We modelled future climate 
change impacts on habitat suitability using ecological niche models (ENMs) and im-
pacts on putative local adaptation using gradient forest models (a genetic-environment 
association analysis; GEA). We used the metric of niche margin index (NMI) to deter-
mine regions of forecasting uncertainty due to climate shifts to novel conditions.
Results: Population genetic structure was characterized by weak genetic differen-
tiation, indicating potential ongoing gene flow among populations. Precipitation as 
snow had high importance for both habitat suitability and changes in genetic varia-
tion across the landscape. Comparing ENM and gradient forest models with future 
climate predicted suitable habitat contracting at high elevations and population al-
lele frequencies across the breeding range needing to shift to keep pace with climate 
change. NMI revealed large portions of the breeding range shifting to novel climate 
conditions.
Main conclusions: Our study demonstrates that forecasting climate vulnerability from 
ecological and evolutionary factors reveals insights into population-level vulnerabil-
ity to climate change that are obfuscated when either approach is considered inde-
pendently. For the Brown-capped Rosy-Finch, our results suggest that persistence 
may depend on rapid adaptation to novel climate conditions in a contracted breeding 
range. Importantly, we demonstrate the need to characterize novel climate conditions 
that influence uncertainty in forecasting methods.
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1  |  INTRODUC TION

Global climate change is dramatically affecting biodiversity, 
and extinction rates are accelerating across taxonomic groups 
(Urban, 2015). Alpine organisms that already inhabit the upper el-
evational reaches can be at particular risk of climate change driving 
upslope range shifts due to reduced potential to shift their range 
(Freeman et al.,  2018; Sekercioglu et al.,  2008); however, this risk 
may be tempered in regions that provide an abundance of micro-
climates (Seastedt & Oldfather, 2021). If range shift is not feasible, 
a species' long-term persistence in the face of climate change will 
likely depend on evolutionary or behavioural adaptation (Aitken 
et al., 2008; Forester et al., 2018; Hoban et al., 2016; Hoffmann & 
Sgró, 2011). Advances in ecological genomics are elucidating the ge-
nomic architecture of local adaptation (Hämälä & Savolainen, 2019; 
Savolainen et al., 2013; Tigano & Friesen, 2016) and providing insight 
into population-level responses to climate change (Bay et al., 2018; 
Dauphin et al.,  2021; Fitzpatrick et al.,  2021; Fitzpatrick & 
Keller, 2015; Rellstab et al., 2016; Ruegg et al., 2018). While common 
garden experiments are widely recognized as the best method for 
identifying signals of local adaptation (de Villemereuil et al., 2016; 
Kawecki & Ebert, 2004), ecological genomic approaches provide an 
alternative in species where common garden approaches are infea-
sible due to constraints related to life history and/or conservation 
status (i.e. threatened or endangered status).

Ecological niche models (ENMs) are used to assess vulnera-
bility to climate change by forecasting the distribution of climatic 
conditions that characterize an organism's current range (Guisan & 
Thuiller, 2005; Pacifici et al., 2015). Given the variety of terminology 
used in the literature surrounding ENMs, we will follow the guide-
lines set out by Sillero (2011) that ENMs model an organism's ecolog-
ical niche and the resulting output maps forecast habitat suitability. 
Genomic offset is a complementary approach to predicting climate 
vulnerability and provides a relative measure of the magnitude of 
evolutionary adaptation required for a population to track changing 
climate conditions (Capblancq et al., 2020; Fitzpatrick & Keller, 2015; 
Rellstab et al., 2021). Genomic offset is based on identifying genetic-
environment associations putatively underlying local adaptation 
and predicting future adaptive genetic composition based on the 
current genetic-environment associations (e.g., with gradient forest 
models; Fitzpatrick & Keller,  2015). However, genomic offset pre-
dictions may ignore key ecological factors (e.g., habitat suitability) 
that would affect persistence, especially for organisms with ranges 
that are experiencing drastic environmental changes. While genomic 
offset has predominantly been assessed independently of ecological 
factors (Capblancq et al.,  2020, Rellstab et al.,  2021; but see Chu 
et al.,  2021; Gougherty et al.,  2021; Nielsen et al.,  2021), vulner-
ability to climate change is a multifaceted problem that should be 

assessed with multiple methodologies and data sources (Dawson 
et al., 2011). Integrating genomic offset and ecological niche models 
would provide an understanding of the ecological factors shaping 
where populations could persist, and the evolutionary factors un-
derlying the amount adaptation required to persist there.

The objective of our study was to combine methods for pre-
dicting population-level response to climate-driven disruptions to 
habitat suitability and genomic adaptation to improve forecasting of 
climate vulnerability. We addressed this objective using the Brown-
capped Rosy-Finch (Leucosticte australis), an alpine-obligate species 
endemic to the Southern Rocky Mountains (Wyoming, Colorado 
and New Mexico) and part of a broader species complex notable 
for specializations to alpine sky islands and arctic tundra (Johnson 
et al., 2020). While climate change broadly results in species shifting 
distributions poleward and upward in elevation (Chen et al., 2011; 
Parmesan & Yohe, 2003), the Brown-capped Rosy-Finch has limited 
potential for poleward range shift given the isolation of the Southern 
Rocky Mountains from other high-elevation mountain ranges and 
the presence of congeneric species that already inhabit those moun-
tain ranges. Furthermore, Brown-capped Rosy-Finches already oc-
cupy nesting cliffs at the highest elevations (above 3350 m) of the 
Southern Rocky Mountains, which limits the possibility for major 
upslope range shifts, although they occupy lower elevations during 
the winter months (Johnson et al.,  2020). Recent genetic studies 
have suggested that mountain ranges do not function as geographic 
barriers to dispersal for the North American Rosy-Finch complex 
(Black Rosy-Finch [Leucosticte atrata], Grey-crowned Rosy-Finch 
[Leucosticte tephrocotis], Brown-capped Rosy-Finch) given the level 
of ongoing gene flow among these species (Drovetski et al., 2009; 
Funk et al., 2021). Ongoing gene flow among Brown-capped Rosy-
Finch populations may be an important component that mitigates 
genomic offset and prevents genetic isolation.

Here, we outline a process to assess climate vulnerability that 
considers evolutionary (e.g. genomic offset) and ecological fac-
tors (habitat suitability; Figure 1). We aim to answer the question: 
How can estimates of genomic offset and habitat suitability be 
combined to improve forecasts of climate vulnerability? Using 
genome-wide sequence data, we assessed population genetic 
structure and estimated levels of inbreeding and genetic diver-
sity to describe spatial genetic variation and appropriately in-
form subsequent genetic-environment association (GEA) analyses 
(Forester et al., 2018; Funk et al., 2019). We performed environ-
mental variable selection to identify a subset of uncorrelated pre-
dictors for use in the GEAs and ENMs. We developed ecological 
niche models (ENMs) using the environmental predictor data and 
presence-absence data from the citizen-science database eBird 
(Sullivan et al., 2009). Additionally, we identified a subset of ge-
nomic variants associated with the environmental data and used 
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these data to model allelic turnover across the landscape with gra-
dient forest (Ellis et al.,  2012; Fitzpatrick & Keller,  2015). Using 
ensembles of global climate models for two time periods, 2041–
2070 and 2071–2100 (AdaptWest Project,  2021), we then fore-
cast climate vulnerability in relation to genomic offset and habitat 
suitability. We demonstrate a novel application of the niche mar-
gin index (Broennimann et al.,  2021) to highlight uncertainty in 
genomic offset predictions due to novel climate conditions.

Specifically, this study aimed to (1) characterize the magnitude 
of genetic change required to track climate change and where pop-
ulations could persist to minimize genomic offset; (2) predict climate-
driven habitat suitability shifts into the future and (3) compare the 
underlying climatic drivers of, and spatial vulnerability to, genomic 
offset and habitat suitability. The integration of these approaches will 
provide a better understanding of evolutionary and ecological factors 
underlying species response to climate change and improve our ability 
to forecast climate change impacts on biodiversity.

2  |  METHODS

2.1  |  Field sampling and sequencing

We sequenced feather and blood samples from 116 individuals 
spanning 11 sites across the Brown-capped Rosy-Finch breeding 
distribution (Table 1). Samples were collected during the breeding 
season of 2017 and 2018. Individuals from the Lost Man Lake and 
Independence Lake sites were combined as a single sampling unit for 
subsequent analyses based on their proximity (<1 km) and the low 
sample sizes (5 and 1 individuals, respectively). Engineer Mountain 
and Horseshoe Basin sites were also in close proximity (<5 km), but 
we retained them as separate sampling units due to the larger num-
ber of individuals per site (8 and 18 individuals, respectively).

We extracted DNA from blood samples using the standard pro-
tocol for Qiagen DNEasy Blood and Tissue Kits and we modified 
the protocol to maximize DNA yield from feathers. Whole-genome 
sequencing libraries were prepared following modifications of 
Illumina's Nextra Library Preparation protocol. Pooled libraries were 
sequenced on HiSeq 4000 lanes at Novogene Corporation Inc. All 
sequence data were quality filtered (GATK: McKenna et al., 2010; 
BCFtools: Li, 2011; Samtools: Li et al., 2009) and aligned (Burrows-
Wheeler Aligner software; Li & Durbin,  2009) to a high-quality 
Brown-capped Rosy-Finch reference genome that was created 
by Dovetail Genomics through 10x de novo assembly and HiRise 
Scaffolding. The reference genome was created from liver samples 
of the Brown-capped Rosy-Finch (Denver Museum of Nature and 
Science samples DMNS52416 and DMNS52417). The reference 
genome was annotated with the most recent zebra finch annota-
tions available (NCBI GCA_008822105.2) using the program Liftoff 
(Shumate & Salzberg, 2021). For the input into all subsequent anal-
yses, we extracted high-quality single-nucleotide polymorphisms 
(SNPs; Supporting information).

F I G U R E  1  Workflow for combining ecological niche 
modelling and genomic offset for determining populationlevel 
climate vulnerability. Genomic data and occurrence data inform 
environmental variable selection by providing the geographic 
points for which environmental correlation is calculated. Species' 
life history information informs which variables are selected from 
correlated pairs, resulting in an uncorrelated set of environmental 
variables. Candidate adaptive SNPs are obtained through genetic-
environment association outlier analyses using the environmental 
variables and genomic data. The resulting candidate SNPs are the 
input into gradient forest models which predict adaptive genetic 
composition across the landscape. The subset of environmental 
variables are also used with occurrence data in ecological niche 
models to habitat suitability. Gradient forest models are used to 
predict adaptive genetic composition to future climate and the 
distance with the baseline environment provides the measure of 
genomic offset. Additionally, the niche margin index is calculated 
to quantify the extrapolation to novel climate. Ecological niche 
models are also projected to future climate to provide a measure of 
future habitat suitability. The integration of these models provides 
a description of where populations are most likely to persist in the 
future and the magnitude of genetic change required to persist 
there. Furthermore, regions of novel climate are depicted to 
highlight uncertainty in the forecasting method
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2.2  |  Population genetic structure

We performed several analyses to describe geographic patterns 
of genetic variation. The presence of closely related individuals 
can skew signatures of population structure, so we used KING 
(Manichaikul et al.,  2010) to identify and remove individuals 
with up to second-degree relationships (kinship > 0.0884). PCA 
provides an efficient nonmodel-based method for assessing 
population structure in high-dimensionality data sets (Patterson 
et al.,  2006). We implemented principal components analy-
sis (PCA) using the R package SNPrelate (Zheng et al.,  2012) in 
R version 3.6.2 (R Core Team, 2019). Additionally, we estimated 
individual ancestry coefficients with the snmf function in the R 
package LEA (Frichot et al., 2014; Frichot & François, 2015), and 
tested a range of clusters from K = 1 to 6 with 100 iterations each. 
Finally, we tested for effects of isolation by distance (linearized 
FST versus log10 geographic distance) with a Mantel test in the R 
package adegenet (Jombart, 2008). Pairwise FST was calculated 
in VCFtools version 0.1.13 (Danecek et al.,  2011). Pairwise FST 
provides an estimate of genetic divergence between populations 
where higher FST values indicate higher divergence. Genetic di-
vergence can increase through genetic drift but is homogenized 
by gene flow between populations. Thus, any patterns of high 
FST between sites can be used to identify potential barriers to 
gene flow. The interaction between levels of gene flow and ef-
fective population size can result in different patterns of nucleo-
tide diversity and inbreeding. We calculated nucleotide diversity 
across 25,000 base-pair windows and individual inbreeding coef-
ficients using VCFtools (Danecek et al., 2011). We estimated con-
temporary effective population size using the LD method from 
NeEstimator (Do et al., 2014).

2.3  |  Bioclimatic variables

Snow is a major component of weather that shapes alpine com-
munities. Snow cover can insulate soils from extreme cold air tem-
peratures (Neuner, 2014) and also dictate the length of the growing 
season (Jonas et al., 2008; Keller et al., 2005). In some alpine plant 
species, reductions in snow cover can result in increased frost dam-
age and decreased plant production (Abeli et al.,  2012; Baptist 
et al., 2010; Inouye, 2000). The Brown-capped Rosy-Finch feeds on a 
variety of seeds throughout the year and on insects during the breed-
ing season (Johnson et al., 2020; Martin et al., 1961; Packard, 1968; 
Warren, 1916). Elevation is an important component of the Brown-
capped Rosy-Finch breeding range in relation to the presence of high-
elevation nesting cliffs (Johnson et al., 2020). To encapsulate the range 
of bioclimatic factors that may influence Brown-capped Rosy-Finch 
alpine breeding habitat, we obtained 32 bioclimatic variables and el-
evation from the AdaptWest Project at a 1 km resolution (AdaptWest 
Project, 2021; Wang et al., 2016). Variable selection involved removing 
correlated variables (Pearson correlation coefficient > 0.75) and using 
expert opinion to select the most likely biological relevant predictor 
from correlated sets. To best represent the current time period that 
corresponds to our sampled data, we obtained the bioclimatic vari-
ables as means across the time period of 1991–2020, and we obtained 
the dataset at an appropriate resolution for Brown-capped Rosy-Finch 
breeding movements (1 km).

2.4  |  Identifying putative adaptive variants

We used two genetic-environment association (GEA) approaches to 
identify a set candidate SNPs that are associated with environment. 

TA B L E  1  Sample location information with environmental data (1991–2020 period)

Location ID Latitude Longitude Sample size MWMT PAS SHM Elevation

Devil's Causeway DECA 40.032 −107.167 15 11.28 954.8 32.9 3508.6

Emma Burr Mountain EBMO 38.751 −106.417 3 10.59 413.8 39.9 3743.9

Engineer Mountain ENMO 37.967 −107.578 8 9.73 783.2 29.4 3825.7

Horseshoe Basin HOBA 37.947 −107.554 18 9.34 820.3 28.1 3891.4

Independence Lake LMIN* 39.140 −106.567 1 9.55 603.4 33.4 3937.2

Lake Agnes LAAG 40.473 −105.895 15 10.16 927.0 27.1 3586.2

Lost Man Lake LMIN* 39.148 −106.570 5 9.55 603.4 33.4 3937.2

Mt. Maxwell MOMA 37.249 −105.147 7 10.04 598.7 25.2 3825.3

Mt. Evans MTEV 39.588 −105.644 11 8.25 543.7 22.4 4163.8

Pike's Peak PIPE 38.833 −105.041 21 8.8 407.5 17.0 4066.0

Snowy Range SNRA 41.368 −106.303 12 11.5 943.4 35.1 3406.7

Note: ID = four letter abbreviation for sample locations used in the manuscript. Latitude and longitude specify the coordinates for sampling site 
locations and sample size specifies the number of individuals captured at these locations. MWMT is the mean temperature of the warmest month 
(°C), PAS is the annual amount of precipitation as snow (mm), SHM is the summer heat moisture index (calculated by dividing MWMT by the mean 
summer precipitation), and the last column is the elevation of the sampling site (m).
*Two sampling sites (Engineer Mountain and Horseshoe Basin) from which individuals were combined as a unit for analyses due to close proximity of 
the sites.
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First, we implemented the multivariate approach of redundancy 
analysis (RDA) as it performs well for detecting weak, multilocus sig-
natures of selection (Forester et al., 2018). We performed RDA using 
environmental and elevation data from individual sampling locations 
as the predictor variables and individual genotypes as the response 
variables. To account for isolation by distance, we created Moran 
Eigenvector Maps (MEMs) from the geographic locations of sam-
pling data and conditioned the RDA model on the MEMs. All RDAs 
were conducted with the R package vegan (Oksanen et al., 2013), 
and step-wise model selection was performed using the ordistep 
function. Multicollinearity in the model was checked with variance 
inflation factors (VIF) and predictors with a VIF greater than 10 were 
removed (Zuur et al., 2010). RDA component contribution was used 
to determine the number of components included for identifying 
candidate SNPs. Candidate SNPs underlying local adaptation were 
identified by having p-values outside a three standard deviation cut-
off (two-tailed p-value = .0027).

Second, we used latent factor mixed models (LFMM) as a uni-
variate regression model to identify candidate SNPs associated with 
each of the predictor variables (Frichot & François, 2015). We set the 
number of K latent factors based on the results from the individual 
ancestry coefficient results. For each model, we set the false discov-
ery rate to 0.05 and calibrated the p-values by setting the genomic 
inflation factor to achieve a flat p-value distribution with a peak at 
0 (François et al., 2016). LFMM analysis was conducted in R using 
the LEA package (Frichot & François, 2015). SNPs identified in both 
RDA and LFMM were used as the candidate SNP set putatively un-
derlying local adaptation. We identified chromosomal position and 
gene information of the candidate SNPs using the Bedtools “clos-
est” function (Quinlan & Hall, 2010) with the annotated Leucosticte 
australis genome. We identified candidate genes by selecting SNPs 
within 10,000 bases from genes of known function and tested for 
gene ontology enrichment with the chicken (Gallus gallus) genome 
using the Gene Ontology resource (Ashburner et al., 2000; Carbon 
et al., 2021; Mi et al., 2019).

Importantly, GEA analyses rely on the assumption that cur-
rent allele frequencies are at equilibrium with the environment 
(Capblancq et al.,  2020; Lasky et al.,  2018). However, populations 
may experience an adaptational lag associated with historical en-
vironmental conditions (Browne et al., 2019). To test the influence 
of this assumption, we created two candidate SNP sets based on 
two temporal periods: one that temporally encompassed our sam-
ple period (1991–2020) and one based on potential adaptational lag 
(1961–1990).

2.5  |  Geographic distribution of putative 
adaptive variation

We used the gradient forest algorithm to describe the associations 
of spatial, environmental and genetic variables (Ellis et al.,  2012; 
Fitzpatrick & Keller,  2015). Gradient forest is a machine learning 

method developed to model ecological community turnover in re-
lation to environmental gradients by creating separate random 
forest models for each species (Breiman,  2001; Ellis et al.,  2012). 
Community turnover is then identified by aggregating environmen-
tal predictor importance for each species. This concept has been 
extended to landscape genetics by substituting allele frequencies 
at genetic loci for species and modelling adaptive genetic composi-
tion across the landscape (Fitzpatrick & Keller, 2015). The turnover 
functions in gradient forest allow for inference of the environmental 
predictors driving observed changes in allele frequency (Fitzpatrick 
& Keller, 2015). We fit gradient forest models to environmental and 
spatial data as predictors for the nine sampling sites with at least six 
individuals using the package gradientForest (Smith & Ellis, 2013). 
We modelled adaptive genetic variation turnover on the landscape 
using the candidate SNP set as the response variable. Model tuning 
was performed on the parameters mtry (random subset of predic-
tors used in random forest) and ntree (number of trees grown in each 
forest; Hastie et al., 2009). We evaluated model performance with 
prediction accuracy calculated from the out-of-bag samples (Ellis 
et al., 2012). We tested model performance of the candidate SNPs 
against a randomized model of candidate SNP allele frequencies and 
a SNP set that included putatively neutral loci (Supporting informa-
tion). Using the top gradient forest model, we interpolated genetic 
composition across the remaining 1  km2 cells from the breeding 
range for which we did not sample genetic data.

2.6  |  Habitat suitability under climate change

We created ENMs using the ensemble modelling approach in the 
R package biomod2 (Thuiller et al.,  2016; Supporting information). 
Presence-absence data were obtained from the eBird Basic Dataset 
(Sullivan et al., 2009) using the R package ebirdst (Strimas-Mackey 
et al., 2021). We used the same uncorrelated set of environmental 
predictor variables as in the GEA analyses. Models were trained 
on random subsets of 80% of the data with 10 replications for five 
algorithms (regression based methods: generalized linear model 
(GLM; McCullagh & Nelder,  2019)), multiple adaptive regression 
splines (MARS; Friedman,  1991), and machine learning methods: 
gradient boosting trees (GBM; Elith et al., 2008), maximum entropy 
(Maxent; Phillips et al., 2006), artificial neural networks (ANN; Lek & 
Guégan, 1999). Given the focus of our subsequent analyses on tem-
poral forecasting, we aimed to use a set of algorithms with balanced 
biases and avoided models that tend to project extreme outcomes 
(Beaumont et al.,  2016). Model performance was based on total 
area under the receiver operator and the relation of specificity and 
sensitivity (true skills statistic, TSS). Only the top performing algo-
rithms were included in the final ensemble model. Binary rasters of 
suitable/unsuitable habitat were created based on a TSS threshold 
that maximized the sum of specificity and sensitivity since this has 
been shown to effectively represent presence (Jiménez-Valverde & 
Lobo, 2007).
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Future distribution was modelled for two time periods (2041–
2070 and 2071–2100) and for four different shared socioeconomic 
pathways (SSPs). The SSPs vary in the possible climate change chal-
lenges global socioeconomic policy will produce (O'Neill et al., 2016): 
SSP126 (low challenges), SSP245 (medium challenges), SSP370 (high 
challenges) and SSP585 (high challenges). Given that the SSP585 
scenario most closely tracks the recent climate predictions from the 
Intergovernmental Panel on Climate Change report (IPCC, 2021), we 
used the SSP585 results for all figures in the main body of the ar-
ticle and provided details of the other scenarios in the Supporting 
information. For all possible combination of time period and SSPs (8 
combinations), we obtained 1  km resolution bioclimatic data from 
13 general circulation models provided by AdaptWest (AdaptWest 
Project,  2021; Wang et al.,  2016). We test for upward elevational 
shifts in habitat suitability between current and future projections 
using a two-sample t-test for the elevation values in the suitable 
habitat binary rasters.

2.7  |  Genomic offset to climate change

Genomic offset estimates the magnitude of evolutionary adaptation 
needed for a population to keep pace with climate change (Capblancq 
et al., 2020; Rellstab et al., 2021). When using gradient forest mod-
els, genomic offset is calculated by the Euclidean distance between 
current genetic composition with the predicted genetic composition 
based on future environment (Fitzpatrick & Keller,  2015). We cal-
culated the mean genomic offset for each cell across the different 
SSP and time period combinations of future climate. In gradient for-
est models, environmental values outside the range of the provided 
trained values from sampling sites result in extrapolation of genetic 
composition. We used the default method of linear extrapolation 
from the non-linear turnover functions in the gradientForest pack-
age (Smith & Ellis, 2013; Supporting information).

2.8  |  Quantifying uncertainty in genetic-
environment associations

The niche margin index (NMI) is a metric that characterizes the dis-
tance from niche margins with 0 representing the margin, 1 being 
the maximum value within the niche, and decreasing negative values 
representing distance outside the niche (Broennimann et al., 2021). 
We use this concept to quantify the niche margins of the observed 
environmental data from our sampling sites and then measure NMI 
for all raster cells in the genomic offset predictions of future cli-
mate. In our usage of NMI, negative values represent regions with 
novel future climate conditions in relation to the current observed 
genetic-environment associations (i.e. at the sampling sites). Positive 
NMI values represent regions with future climate conditions that 
are currently experienced on the breeding range. Thus, genomic 
offset predictions in regions with positive NMI are based on the 
space-for-time assumption in the gradient forest models (Capblancq 

et al., 2020), while genomic offset predictions in regions with nega-
tive NMI indicate higher model uncertainty due to extrapolation in 
the gradient forest models.

3  |  RESULTS

3.1  |  Population genetic structure

Whole-genome sequencing produced genomic data with an aver-
age 6x depth of coverage and variant filtering resulted in 429,442 
SNPs for subsequent genetic analyses. We removed 12 individu-
als from the dataset due to relatedness. Visualizing PCA results 
revealed weak clustering of Pike's Peak individuals from other 
sampling sites (Figure  S1). The weak PCA clustering of individuals 
suggests low genetic differentiation among the sites, which was 
also supported by low pairwise FST values ranging from 0 to 0.042 
(mean FST = 0.012; Table S1). The Mantel test did not identify as-
sociations between genetic and geographic distance (r  =  −0.003, 
p-value =  .42), but visualization of these pairwise comparisons re-
vealed the Pike's Peak population had elevated genetic differentia-
tion compared with other site comparisons (Figure  S2). Individual 
ancestry coefficients had the lowest cross-entropy values for K = 1 
clusters (cross-entropy = 0.870; Figure S3). Results for K = 2 had 
only slightly higher cross-entropy (0.872) and revealed separation of 
Pike's Peak individuals (Figure S3), similar to PCA results. Nucleotide 
diversity was similar across sampling locations (pi mean = 0.00053, 
range = 0.00047–0.00056; Table 1). The per-individual F inbreeding 
statistic was also similar across sampling locations (F mean = 0.11, 
range = 0.02–0.25; Table 1). Effective population size for the five 
sampling locations that had sufficient sampling size ranged from 108 
to 403 (Table 1).

3.2  |  Identifying putatively adaptive variants

The final uncorrelated environmental variable set consisted of mean 
temperature of the warmest month (MWMT), precipitation as snow 
(PAS) and summer heat moisture index (SHM; mean summer tempera-
ture divided by summer precipitation), as well as elevation. For RDA, 
we retained the first MEM (MEM1) spatial predictor for accounting for 
population structure as it was uncorrelated with the other predictor 
variables and explained 42.4% of the spatial variation. Model selection 
in the RDA retained all predictor variables. RDA outlier SNPs puta-
tively associated with climate were identified by loadings on the first 
constrained axis (Figure S4). We identified 2040 and 2045 candidate 
SNPs from the 1961–1990 and 1991–2020 environmental predictor 
datasets, respectively. In LFMM, we used a lambda of 0.7 to achieve 
the optimal distribution of p-values for each of the four predictor 
tests (Figure S5). With K = 2 latent factors, we identified 4844 and 
4502 candidate SNPs from the 1961–1990 and 1991–2020 environ-
mental predictor sets, respectively. Intersecting the RDA and LFMM 
datasets identified 501 and 436 candidate SNPs for the 1961–1990 
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and 1991–2020 environmental predictor sets, respectively. Gene 
ontology enrichment analysis identified 12 genes associated with 
the biological process glutamatergic regulation of synaptic transmis-
sion (Gene Ontology ID: 0051966, p-value  =  2.69e-6, false discov-
ery rate = 3.67e-2) and six genes associated with regulation of small 
GTPase mediated signal transduction (Gene Ontology ID: 0051056, 
p-value = 2.73e-6, false discovery rate = 1.86e-2; Table S2).

3.3  |  Geographic distribution of putative adaptive 
variation and habitat suitability

Our evaluation of tuning parameters in gradient forest models identi-
fied the out-of-bag testing accuracy to reach convergence with 100 
trees (ntree = 100). Using all predictors in each tree (mtry = 5) achieved 
the highest proportion of variance explained across the predictors 
(Figure S6). The comparison of the two time period predictor sets, with 
the corresponding candidate SNPs, revealed similar relative predictor 
importance (Figure S7). Therefore, we continued all subsequent analy-
ses with the 1991–2020 predictor set and candidate SNPs. With the 
candidate SNP set, raw predictor importance was ranked in descend-
ing order of precipitation as snow (PAS), mean temperature of the 
warmest month (MWMT), summer heat moisture index (SHM), eleva-
tion and MEM-1 (Figure 2a). The order and magnitude of importance in 
the top predictor variables was not reflected in the randomized candi-
date SNP set or the reference SNP set that included neutral variation 
(Figure 2a). Turnover functions for the predictors revealed mostly step-
wise patterns of allelic turnover, except for sharp turnover between 
precipitation as snow values of 500–600 mm (Figure 2b-f). Sampling 
sites were most strongly separated in genetic composition turnover 
driven by precipitation as snow (Figure 3a).

Filtering eBird data resulted in 192 presence points and 4973 
absence points in the ENMs. The Maxent and GLM algorithms were 
used for the ensemble ENM as they had the strongest ability in dis-
cerning species presence with high mean true skills statistic across 
runs (Maxent: 0.86 ± 0.03 standard deviation, GLM: 0.86 ± 0.03) and 
area under the receiver operator curve (AUC; Maxent: 0.97 ± 0.01, 
GLM: 0.95 ± 0.02). Environmental variable importance was similar 
among the algorithms with MWMT, PAS, and elevation as the most 
important variables (Table S3). Binary rasters were created using a 
habitat suitability threshold of 0.03 derived by maximizing the spec-
ificity and sensitivity of the model. The highest values for habitat 
suitability were produced for the highest elevation portions of the 
breeding range with lower habitat suitability in the north-western 
portions of the Rocky Mountains (Figure 3b).

3.4  |  Genomic offset and habitat suitability under 
climate change

The magnitude of genomic offset was highly variable across the 
breeding range with some of the lowest values in the southwestern 
mountains (Figure 3c). Some of the eastern mountain ranges had the 

largest concentration of high genomic offset values (Figure 3c). While 
the magnitude of genomic offset increased with climate scenario and 
time period, the spatial patterns of the relatively low and high genomic 
offset remained the same (Figure S8). The ENM models revealed that 
future suitable habitat broadly became more fragmented in the 2041–
2070 time period (Figure 3d). Future suitable habitat shifted upward 
in elevation from baseline habitat suitability projections by a mean of 
178 m (3367 m to 3545 m) across all raster cells (t = −74.6, df = 35,378, 
p-value < 2.2e-16, 95% CI: 173.3, 182.7). Less severe climate scenarios 
showed reduced range contraction, and range contraction increased 
when forecasted to the 2071–2100 time period (Figure S9).

3.5  |  Quantifying uncertainty in genetic-
environment associations

For the baseline time period, the majority of the geographic region 
for which we interpolated genetic composition was within or close 
to the niche margins derived from our sampling sites (Figure 4a). For 
the 2041–2070 time period, a larger portion of the range shifted 
outside the niche margins, broadly indicating a shift to novel cli-
mate conditions. Comparing the environmental data among time 
periods showed in overall decrease in future precipitation as snow 
(Figure 4b) and increases in mean temperature of the warmest month 
(Figure 4c) and summer heat moisture index (Figure 4d). The largest 
shift to novel climate conditions occurred with the temperature of 
the warmest month (Figure 4c). Combining visualizations of genomic 
offset, habitat suitability, and NMI showed that the central portion 
of the breeding range had the most uncertain genomic offset predic-
tions due to climate shifts (Figure 5).

4  |  DISCUSSION

In this study, we evaluate climate change consequences related to 
disruptions of climate conditions putatively underlying local adapta-
tion and habitat suitability on the breeding range of an alpine spe-
cialist, the Brown-capped Rosy-Finch. Persistence of Brown-capped 
Rosy-Finch populations in the face of climate change may depend 
on rapid adaptation in a contracted region of suitable habitat. We 
broadly demonstrate genomic offset predictions by themselves can 
be problematic for inferring vulnerability to climate change when 
(1) changes in habitat suitability preclude a population from persist-
ing in a region of forecasted low genomic offset and/or (2) when 
there are widespread regions forecasted to experience novel climate 
conditions.

4.1  |  Comparing climate drivers of habitat 
suitability and local adaptation

For the Brown-capped Rosy-Finch, precipitation as snow, mean 
temperature of the warmest month, and elevation were the 
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strongest predictors of habitat suitability. Our results forecast that 
the lowest elevational limits of suitable habitat for Brown-capped 
Rosy-Finches will contract to higher elevations. Similar forecasts 
of suitable habitat loss at lower elevations have been made for an-
other alpine-obligate species complex (avian genus Lagopus; Scridel 
et al., 2021). Importantly, the upward elevational shift of predicted 
high habitat suitability may not necessarily correspond to a simi-
lar scale of actualized range contraction. A key factor that may 
mitigate climate change risks for alpine species, especially in the 
Rocky Mountains, is the highly heterogeneous topography of the 
alpine landscape (Seastedt & Oldfather, 2021). Alpine microtopog-
raphy can result in thermal refugia along short horizontal distances 
that mimic air temperature changes of hundreds of meters upslope 
(Scherrer & Körner, 2010). The American Pika (Ochotona princeps) 
is an example of a small alpine species that can behaviourally adapt 

to suboptimal thermal regimes using different microhabitats (Millar 
et al.,  2018; Rodhouse et al.,  2017). While the thermal tolerance 
of the Brown-capped Rosy-Finch is unknown, behavioural adapta-
tion to microhabitat use may be an important component of their 
climate change response. Given that Brown-capped Rosy-Finches 
nest in cliffs (Hendricks, 1977; Packard, 1968; Sclater, 1912), small 
changes in nesting site selection (e.g. cliff aspect) could provide 
dramatic differences in the microhabitat climate. Research into 
Rosy-Finch microhabitat usage and physiology would provide much 
needed additional information regarding predicted response to cli-
mate change.

The amount of precipitation as snow appears to have biologi-
cal importance for both local adaptation and the realized niche 
for the Brown-capped Rosy-Finch (Figure  2b; Table S3). In alpine 
plant communities, snow cover can have a large effect on flower 

F I G U R E  2  Performance of gradient 
forest models. (a) Raw R2 importance 
values for variables used as predictors 
in gradient forest model for three 
different datasets, which are: “All” is the 
total genomic variant set of 429,442 
SNPs, “candidate” is the 436 candidate 
SNPs associated with the 1991–2020 
baseline environment, and “random” is 
randomized genotypes of the candidate 
SNPs among the sampling locations. 
Using the candidate SNPs, larger raw 
importance values were obtained with the 
environmental predictors (precipitation as 
snow, mean temperature of the warmest 
month, and summer heat moisture index) 
than in the other two SNP sets. (b-f) the 
turnover functions from gradient forest 
model show the weighted cumulative 
importance values, which represent 
the relative importance of a variable in 
explaining changes in allele frequency. 
Here, only (b) precipitation as snow 
reveals consistently higher importance in 
the candidate SNP set than the other two 
datasets
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F I G U R E  3  (a) Mapping of genetic 
composition from the candidate SNP 
gradient forest model with colours 
based on the biplot of environmental 
variable contribution to allele frequency 
change. Similar colours represent regions 
predicted to contain populations with 
similar genetic composition based on 
environment. Sampling sites represented 
by grey triangles. (b) Habitat suitability 
from the ENM for the current time 
period had the highest habitat suitability 
values in the highest elevation portions 
of the breeding range (bright yellow). 
The northwestern mountain ranges 
(e.g. snowy range and Devil's causeway) 
had some of the lower values of habitat 
suitability (darker colours). Using the 
future time period of 2041–2070 and 
the SSP 585 scenario we predicted 
genomic offset and habitat suitability. (c) 
Genomic offset was highly variable across 
the breeding range with some of the 
lowest values (blue) in the southwestern 
mountains and highest (red) in the eastern 
mountain ranges. (d) Habitat suitability 
decreased across the range with isolated 
patches of high suitability (bright yellow)
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abundance and the evolution of adaptive traits to reduce frost dam-
age (Inouye, 2000). In turn, this could affect Brown-capped Rosy-
Finches foraging in the breeding season as they feed on available 
insects and seeds from a wide-range of plant species and families 
(Johnson et al.,  2020; Packard,  1968). Our findings of candidate 
SNPs having enriched gene ontology categories—synaptic trans-
mission (GO:0051966) and GTPase-mediated signal transduction 
(GO:0051056)—provide an avenue for future research to understand 
environmental selective pressures. Of the 18 genes we identified 
in these gene ontology categories, eight genes (CDC42SE2, RASA3, 
ITGB1, SLIT2, RASGEF1A, GRIK2, GRM3 and NRXN1) are associated 
with cognitive function, three with high-altitude adaptation (GRM5, 
NRXN1 and HCN1) and two with feather colour and morphology 
(KITLG and GRM8; Table S2). The cognitive-associated genes SLIT2 
and GRM3 have been identified as being important to the foraging 
and food-caching habits of a montane bird, the Mountain Chickadee 
(Poecile gambeli; Branch et al.,  2022). White-tailed Ptarmigan 
(Lagopus leucura) is another alpine specialist with low genetic differ-
entiation and range-wide adaptive divergence potentially associated 
with diet (Fedy et al., 2008; Zimmerman et al., 2021). For Brown-
capped Rosy-Finch, further elucidating the connections between 
gene functions and local adaptation (e.g. linking genotypes and phe-
notypes) is an important next step in understanding the effects of 
climate change.

4.2  |  Geographic patterns of climate vulnerability

Our integrative forecast of range shift and genomic offset in the 
Brown-capped Rosy-Finch shows that climate vulnerability from 
decreased habitat suitability and increased genomic offset do 
not necessarily align spatially. For example, some of the northern 
mountain ranges had low-to-medium values of genomic offset 
(Figure 3c) but were not forecasted to have suitable habitat in the 
future (Figure 3d). However, some southwestern regions with the 
highest genomic offset (Figure  3c) also showed high vulnerability 
to loss of suitable habitat in the future (Figure 3d). Broadly, these 
results show that interpretation from genomic offset predictions 
alone leave out important considerations of climate vulnerability. 
Furthermore, these results underscore the importance of using mul-
tiple measures of vulnerability for informing conservation and man-
agement (Dawson et al., 2011; Rellstab et al., 2021). For organisms 
that inhabit regions experiencing large climate shifts, even the low-
est genomic offset values may indicate relatively large allelic shifts 
required for a population to retain optimal genetic-environment 
associations.

Alpine climate conditions are changing dramatically in the 
Southern Rocky Mountains, especially in relation to snowpack 
(Pederson, Gray, Ault, et al.,  2011; Pederson, Gray, Woodhouse, 
et al., 2011) and summer temperature increases (Pepin et al., 2022). 

F I G U R E  4  Identifying the magnitude 
of climate shift to novel conditions. (a) 
Calculating the niche margin based on 
our sampling sites and the niche margin 
index to future climate revealed large 
portions of the breeding range shifting 
to novel climate conditions (purple). 
The southern portions of the breeding 
range had the largest geographic areas 
retaining similar climate conditions (green) 
to the sampling sites. (b–d) of the three 
environmental variables in the gradient 
forest model that change temporally (i.e. 
excluding elevation), the largest shifts to 
novel conditions are present in the mean 
temperature of the warmest month
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In our study, NMI results suggest that the central and northwest 
portion of the Brown-capped Rosy-Finch breeding range are shifting 
to novel climate conditions (Figure 4a). Of the bioclimate variables 
most tied to habitat suitability and putative adaptive variation, the 
amount of precipitation as snow is decreasing across the breeding 
range in the future (Figure  4b), and the mean temperature of the 
warmest month is dramatically increasing (Figure 4c). However, our 
characterization of change in these specific bioclimate variables is 
based on the ecological niche model predictions of range from eBird 
citizen science data. Importantly, citizen science data for this organ-
ism may be more likely to be collected at lower elevations that are 
more accessible to observers than the higher elevation portions of 
the breeding range. This sampling bias could over- (or under-) esti-
mate the current distribution of the breeding range, as well as the dis-
tributions of climate values across future time periods (Figure 4b–d). 

Nonetheless, our NMI measures, which were solely based on climate 
distance from the climate niche defined by our sampling sites, re-
veal large climate shifts across high-elevation portions of the range 
(Figure 4a).

4.3  |  Considerations in forecasting genomic offset

Recent reviews have highlighted a number of key assumptions 
and limitations that need to be addressed in the ongoing develop-
ment of genomic offset methods for effective use in conservation 
(Capblancq et al.,  2020; Rellstab et al.,  2021). Genomic offset ap-
proaches assume that similar future conditions will result in simi-
lar genetic composition (space-for-time assumption). While this 
assumption may be problematic (e.g. multiple genetic architectures 

F I G U R E  5  Population-level 
vulnerability to future climate of 2041–
2070. Colours represent genomic offset 
and the niche margin index (NMI). 
Genomic offset ranges from 0.05 (blue) 
to 0.12 (red), and the transparency of 
the colours reflects NMI. Bright colours 
represent NMI within the niche margins 
(between 0 and 1), while decreasing 
negative NMI values (novel climate) are 
represented by the darkening of the 
colours. Genomic offset predictions are 
shown for the predicted future suitable 
breeding range from the ecological niche 
model. The current ENM projection 
(1991–2020) is shown with shaded black 
lines. The central and northwestern 
portions of the range have the largest 
concentration of regions shifting to 
novel climate, and therefore uncertain 
forecasting predictions
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underlying an adaptive optimum), novel future conditions further 
increase the uncertainty of population response due to predicted 
genetic composition from unobserved environmental conditions. To 
address part of the uncertainty temporal extrapolation, we used the 
niche margin index highlight these regions of extrapolation to future 
climate conditions (Figure 4a). Given the reliance of gradient forest 
methods on temporal extrapolation from non-linear turnover func-
tions, potentially to novel conditions, we strongly recommend future 
studies to provide some measure of this uncertainty. Another similar 
assumption is that populations are at adaptive equilibrium with the 
temporal period during which genetic-environment associations are 
being tested. Long-lived species (e.g. trees) are particularly prone to 
violate this assumption given that populations may have been es-
tablished centuries ago with different selection pressures (Rellstab 
et al.,  2021). For the shorter-lived Brown-capped Rosy-Finch, we 
tested for the potential influence of adaptational lag by compar-
ing environmental predictors between two baseline environmental 
periods. While our results suggested limited differences in genetic-
environment associations with these two periods, additional study 
into the role of effective population size and genetic drift in adap-
tive (non)equilibrium in this this system may be insightful (Láruson 
et al., 2022).

Furthermore, incorporating factors of evolutionary adaptation 
into genomic maladaptation forecasting methods could further 
refine these predictions. Large populations with gene flow and 
minimal genetic drift are expected to have higher adaptive poten-
tial than small, isolated populations (Funk et al., 2019). Our results 
show that Brown-capped Rosy-Finches have relatively high genetic 
connectivity and previous studies have showed that there is intro-
gression within the Rosy-Finch complex (Drovetski et al., 2009; E. R. 
Funk et al., 2021). Gene flow can promote the rapid spread of ben-
eficial alleles among populations and also maintain standing genetic 
variation for novel selection pressures (Bernatchez,  2016; Tigano 
& Friesen,  2016; Yeaman,  2015). Given that genomic offset does 
not account for gene flow, estimates of genomic offset may over-
estimate or underestimate future maladaptation (Exposito-Alonso 
et al., 2017). In the case of the Brown-capped Rosy-Finch, under-
standing the influence of gene flow on adaptation to a changing en-
vironment is an important next step for incorporating these results 
into management decisions.

5  |  CONCLUSIONS

Here, we show that the Brown-capped Rosy-Finch faces climate 
threats across their breeding range from changing habitat suitability 
and disruptions of genetic-environment associations. Future persis-
tence may depend on rapid adaptation to novel climate conditions in 
a contracted breeding range. Expanding future research to forecast 
climate threats across the fall and wintering range would facilitate 
an assessment of climate vulnerability across the full annual cycle. 
We also note the importance of identifying the potential for behav-
ioural adaptation to alpine microrefugia that may mitigate climate 

change threats. The results of this study highlight the importance of 
combining multiple methods to characterize climate vulnerability in 
a more nuanced manner than provided by any of the methods alone.
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