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Abstract
Identifying areas of high evolutionary potential is a judicious strategy for developing 
conservation priorities in the face of environmental change. For wide- ranging species 
occupying heterogeneous environments, the evolutionary forces that shape distinct 
populations can vary spatially. Here, we investigate patterns of genomic variation 
and genotype– environment associations in the hermit thrush (Catharus guttatus), a 
North American songbird, at broad (across the breeding range) and narrow spatial 
scales (at a hybrid zone). We begin by building a genoscape or map of genetic variation 
across the breeding range and find five distinct genetic clusters within the species, 
with the greatest variation occurring in the western portion of the range. Genotype– 
environment association analyses indicate higher allelic turnover in the west than in 
the east, with measures of temperature surfacing as key predictors of putative adap-
tive genomic variation rangewide. Since broad patterns detected across a species' 
range represent the aggregate of many locally adapted populations, we investigate 
whether our broadscale analysis is consistent with a finer scale analysis. We find that 
top rangewide temperature- associated loci vary in their clinal patterns (e.g., steep 
clines vs. fixed allele frequencies) across a hybrid zone in British Columbia, suggesting 
that the environmental predictors and the associated candidate loci identified in the 
rangewide analysis are of variable importance in this particular region. However, two 
candidate loci exhibit strong concordance with the temperature gradient in British 
Columbia, suggesting a potential role for temperature- related barriers to gene flow 
and/or temperature- driven ecological selection in maintaining putative local adapta-
tion. This study demonstrates how patterns identified at the broad (macrogeographic) 
scale can be validated by investigating genotype– environment correlations at the 
local (microgeographic) scale. Furthermore, our results highlight the importance of 
considering the spatial distribution of putative adaptive variation when assessing 
population- level sensitivity to climate change and other stressors.
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1  |  INTRODUC TION

Conservation strategies aimed toward preserving a species' evolu-
tionary potential and its ability to adapt to changing environments 
requires an understanding of the ecological and evolutionary pro-
cesses that shape intraspecific genetic variation (Morgan et al., 2020; 
Smith et al., 2021; Thomassen et al., 2011; Zhen et al., 2017). The 
field of landscape genomics is rapidly advancing as methods for gen-
erating genome- wide datasets and detecting loci associated with 
adaptive divergence are applied to nonmodel organisms (Balkenhol 
et al., 2017; Hohenlohe et al., 2021; Waldvogel et al., 2020). In par-
ticular, understanding the spatial distribution of such adaptive ge-
netic variation, and the underlying processes responsible for it, is 
critical for anticipating how species might respond to future environ-
mental change and for developing management priorities that help 
mitigate negative outcomes (Allendorf, 2017; Williams et al., 2008).

One approach for understanding patterns of adaptation across 
a landscape is through tests of genotype– environment associations 
(Hoban et al., 2016), which have been studied in an array of taxa 
(Bennett et al., 2021; Frachon et al., 2018; Hofmeister et al., 2021; 
Jaffé et al., 2019; Waterhouse et al., 2018). Recent continent- wide 
studies of migratory birds have identified populations most vulner-
able to future climate change based on spatial variation in climate- 
associated loci (Bay et al., 2018; Ruegg et al., 2018). Environmental 
factors, such as temperature in willow flycatchers (Empidonax traillii) 
and precipitation in yellow warblers (Setophaga petechia), are im-
portant predictors of putative adaptive variation. In these species, 
candidate loci associated with temperature and precipitation are lo-
cated near functional genes that may play a role in thermal tolerance 
and heat stress (Ruegg et al., 2018) and migration and dispersal (Bay 
et al., 2018), respectively.

Although genotype– environment association analyses are a 
powerful tool, they inherently represent a broad brush picture 
across many populations (Hoban et al., 2016). Most landscape ge-
nomic studies use these broadscale patterns to infer what might 
be driving local adaptation (Rellstab et al., 2015), but they do not 
investigate whether patterns identified by broadscale analysis can 
be validated at the local scale. Often landscape genomic studies 
may be prone to false positives (De Mita et al., 2013; Frichot & 
François, 2015) and/or identify environmental predictors and can-
didate loci that are associated with some parts of the range but not 
others (Poncet et al., 2010). The overarching generalized patterns 
identified at the broad scale, however, can be further evaluated by 
close examination locally (Vines et al., 2016). For example, by study-
ing a hybrid zone in one area, it is possible to identify which, if any, 
of the important rangewide predictors are driving local adaptation in 
that particular region (Hewitt, 1988, 2004). Since hybrid zone anal-
yses can elucidate mechanisms underlying local adaptation (Rundle 

& Nosil, 2005), they can provide a framework at the local scale for 
substantiating the broadscale patterns identified by genotype– 
environment associations.

Here, we compare patterns of genetic variation across two dif-
ferent spatial scales: rangewide (macrogeographic) and local (mi-
crogeographic). We focus on hermit thrushes, Catharus guttatus 
(Pallas, 1811), a migratory songbird well- suited to landscape genomic 
approaches because they occupy heterogeneous environments 
throughout their continent- wide breeding range in North America. 
At the macrogeographic scale (i.e., across the breeding range), this 
species exhibits high subspecific variation in fitness- related pheno-
typic traits such as morphological variation in body size, wing and 
bill shape, plumage coloration, and song (Aldrich, 1968; Nelson 
et al., 2021; Roach & Phillmore, 2017). There are three generally ac-
cepted groups of subspecies (Figure S1), and distributed among them 
are 12 individual subspecies (Aldrich, 1968; Dellinger et al., 2020). 
Two of the three groups occur in western North America, repre-
senting the majority of subspecies (10 of 12) and highest phenotypic 
diversity. In contrast, the third group, which contains only two of 
12 subspecies, occupies the expansive area from central British 
Columbia (CAN) to the East coast (Dellinger et al., 2020).

At the macrogeographic scale, our objective is to investigate how 
genetic differentiation changes with the environment. The pattern 
of intraspecific diversity in hermit thrushes mirrors that of beta spe-
cies diversity in birds of North America, where it is highest along the 
Pacific region and lowest throughout the environmentally uniform 
boreal areas that stretch across Canada (McKnight et al., 2007; Melo 
et al., 2009). At the landscape scale, habitat selection (based on ele-
vational range) and climate adaptation (based on variation in evapo-
transpiration) have been shown to drive these patterns of avian 
beta species diversity within ecoregions of North America (Veech & 
Crist, 2007). Based on high phenotypic diversity of hermit thrushes 
throughout their western breeding range (Dellinger et al., 2020), we 
predict that environmentally associated genetic variation will be 
greatest in the west.

At the microgeographic scale, our objective is to determine 
whether environmental predictors indicated by the rangewide 
macrogeographic scale analysis can be validated at the local scale. 
This microgeographic analysis focuses on a hybrid zone in British 
Columbia, where divergent ecotypes representing two hermit thrush 
subspecies groups come together (Alvarado et al., 2014; Dellinger 
et al., 2020). This intraspecific hybrid zone between ecotypes cor-
responds with a migratory divide (where two populations with dis-
parate migratory directions meet), represents a secondary contact 
zone between western and eastern lineages that diverged approx-
imately 960,000 years before present (ybp) (Alvarado et al., 2014), 
and falls along an existing ecological gradient (Alvarado et al., 2014; 
Hamann & Wang, 2006).

K E Y W O R D S
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One way to determine whether the broadscale environmental 
predictors are relevant to specific populations is to investigate con-
cordance across broad and narrow spatial scales (Gugger et al., 2021). 
Here, we assess whether the candidate loci associated with import-
ant rangewide environmental predictors are consistent across the 
two scales. Concordance of clines between these loci and a local 
climate and/or habitat gradient would suggest a potential barrier to 
gene flow and/or role for ecological selection at the local scale (Vines 
et al., 2016). However, since broadscale genotype– environment as-
sociation analyses reflect the aggregate of many local populations 
that may or may not differ from one another (Poncet et al., 2010), 
not all important environmental predictors and top candidate loci 
are expected to be consistent across both scales. Nevertheless, 
identifying which rangewide environmentally associated candidate 
loci also exhibit low gene flow across the hybrid zone could provide 
insight into ecological and evolutionary processes important to local 
adaptation in that region and how that may, in turn, contribute to the 
broadscale patterns (Rundle & Nosil, 2005; Vines et al., 2016).

To achieve our objectives, we first sequence the hermit thrush 
genome, generate a dataset of single- nucleotide polymorphisms 
(SNPs), and conduct genome- wide genetic analyses on samples col-
lected at macro-  and microgeographic scales. Specifically, for the 
analyses, we (i) assess rangewide genetic structure and map spa-
tial patterns of genetic variation; (ii) identify patterns of potentially 
adaptive genetic variation rangewide; (iii) identify candidate loci as-
sociated with top rangewide environmental predictors; (iv) conduct 
cline analysis of genetic data, including the top rangewide candidate 
loci, at a hybrid zone to evaluate potential drivers of adaptation at 
the local scale; and (v) discuss the conservation implications of our 
findings in the context of future climate change. To accomplish this, 
for the rangewide dataset, we use gradient forest (Ellis et al., 2012) 
to identify areas of high putative adaptive genetic variation and im-
portant environmental predictors. Next, we use latent factor mixed 
models (Frichot et al., 2013) to identify top environmentally asso-
ciated loci, after accounting for population structure. Then, at the 
hybrid zone, we use HZAR (hybrid zone analysis for R) (Derryberry 
et al., 2014) to compare clines for overall genomic variation including 
the top environmentally associated candidate loci identified in the 
rangewide analysis. Together, analyses at the micro-  and macrogeo-
graphic scales can improve our understanding of the environmental 
drivers of genetic variation, including how the rangewide patterns 
can be validated through investigations of putative adaptation at the 
local scale.

2  |  MATERIAL S AND METHODS

2.1  |  Sampling and DNA extraction

Blood samples of 310 individuals were obtained from across the 
breeding range of the hermit thrush (Figure 1). Samples were col-
lected from birds during the breeding season (May through August). 
Individual samples were grouped into sites, defined as individuals 

breeding within one degree latitude and longitude with no more than 
10% difference in any environmental variable (as indicated by our en-
vironmental predictors). This resulted in 27 sites across the breeding 
range (Figure 1). In Table 1, each sited is labeled according to its sub-
species group, for which the range limits tend to be better defined 
compared with those of the subspecies (Dellinger et al., 2020). Our 
rangewide sampling scheme includes 13, 7, and 7 sites from within 
the range of Western Lowland, Western Mountain, and Northern 
subspecies groups, respectively (Table 1, Figure S1). This is propor-
tional to the number of subspecies and phenotypic variation within 
each group (i.e., sampling was heavily focused across the regions of 
higher phenotypic variation where genetic differences were more 
likely to be pronounced). For the microgeographic analysis, we focus 
on a hybrid zone where the Western Lowland and Northern subspe-
cies groups, reflecting the western and eastern lineages (Alvarado 
et al., 2014), meet in British Columbia. This represents the best 
known split between the main subspecies groups, and as a result, 
there is thorough sampling from this area across a known environ-
mental gradient. From all samples, DNA was extracted using the 
Qiagen™ DNeasy Blood and Tissue extraction kit according to the 
manufacturer’s protocols and quantified using the Qubit® dsDNA 
HS Assay kit (Thermo Fisher Scientific).

2.2  |  Genome assembly

Blood from a single hermit thrush individual (band number 2471– 
25909) from Sitka, Alaska was collected and sent to the University 
of California Davis (UC Davis) Genome Center for high molecular 
weight DNA isolation and 10× Genomics Chromium Genome library 
preparation. The 10× method uses microfluidics to separately parti-
tion and barcode smaller portions of the genome, information which 
can be leveraged for larger- scale assembly and phasing. Sequencing 
of the 10× library was performed as PE150 on a half lane (to target 
60× coverage as suggested by 10×) of an Illumina Hiseq X Ten run 
(Illumina). To assemble the hermit thrush genome, we implemented 
the workflow provided with the Supernova assembler v2.1.1 (10× 
Genomics, San Francisco, CA, USA) (Weisenfeld et al., 2017). We 
first ran the mkfastq script, which demultiplexes the Illumina se-
quencer's base call files (BCL). These paired- end reads were input 
to the supernova run module for de novo assembly. We used default 
parameter values, with the exception of no - maxreads argument so 
that we used all reads for assembly. To remove potential minor con-
tents of sequence cross- contamination, which occurs when libraries 
are multiplexed in a sequencing lane (Costello et al., 2018), we ran a 
decontamination workflow using custom scripts to identify and re-
move sequences that are misassigned. First, we filtered the barcodes 
and generated raw reads after barcodes were cut off. Next, we cre-
ated a bam file by mapping the FASTQ files produced above to the 
original genome assembly using bwa (Li & Durbin, 2009). Finally, we 
sorted bam files to calculate and plot the median ratio (i.e., the num-
ber of reads in the genome barcode/ number of reads mapped to 
the scaffold) compared with length of scaffold. We defined potential 
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contaminants as scaffolds less than 1 kb that had a median ratio 
less than 10, and we removed 39 such scaffolds from the genome 
assembly.

2.3  |  SNP discovery and SNP filtering

We performed genome scans on 310 individuals following be-
stRAD library preparation protocol with some modifications (Ali 
et al., 2016). In short, DNA was normalized to a final concentration 
of 100 ng in a 10 μl volume and digested with restriction enzyme SBfl 
(New England Biolabs, NEB). The fragmented DNA was then ligated 
with SBfI specific adapters prepared with biotinylated ends, and 
samples were pooled and cleaned using 1× Agencourt® AMPure XP 
beads (Beckman Coulter). Pooled and clean libraries were sheared 
to an average length of 400 bp with 10 cycles on the Bioruptor NGS 
sonicator (Diagenode) to ensure appropriate length for sequencing, 
and an Illumina NEBNext Ultra DNA Library Prep Kit (NEB) was used 
to repair blunt ends and ligate on NEBNext Adaptors to the resulting 

DNA fragments. Agencourt® AMPure XP beads (Beckman Coulter) 
were then used to select DNA fragments with an average length of 
500 bp, libraries were enriched with PCR, and cleaned again with 
Agencourt® AMPure XP beads. The resulting libraries were se-
quenced on four lanes of an Illumina HiSeq 2500 at the UC Davis 
Genome Center using 250 base pair, paired- end sequencing. The 
final two lanes included 124 individuals with low coverage from the 
first two sequencing lanes; thus, these libraries were resequenced 
along with an additional 68 new individuals.

We used the program Stacks v2.60 (Catchen et al., 2013) to 
demultiplex, filter and trim adapters from the data with the pro-
cess_radtags function. Duplicate read pairs were removed using the 
clone_filter function in Stacks. Only cases in which both reads in a 
pair passed quality filters were used in downstream analysis. Reads 
were mapped to our genome assembly using bowtie2 (Langmead & 
Salzberg, 2012). We then used the Haplotype Caller in the Genome 
Analysis Toolkit to detect single- nucleotide polymorphisms (SNPs), 
following best practices from the Broad Institute (http://www.broad 
insti tute.org). In an initial round of variant filtration, we discarded 

F I G U R E  1  Genetic structure of populations across the hermit thrush breeding range, demonstrating high genetic structure in western 
North America and limited genetic structure throughout the boreal and eastern regions. (a) Results from ADMIXTURE illustrating five 
genetically distinct populations, including cluster names, across the breeding range for the full genomic dataset of 90,439 SNPs. Numbers 
refer to breeding site locations depicted on the map in panel b and are identified in Table 1. (b) Spatially explicit map of population genetic 
structure across the breeding range. The colors correspond to the five genetic clusters (K = 5). The density of each color reflects the 
posterior probability of membership for each pixel to the most probable of the five genetic clusters. Transparent color appears on the map in 
areas of admixture (i.e., mixed posterior probability and thus uncertain assignment). Due to admixture among the four western clusters, the 
relatively continuous distribution (see Figure 2a) of hermit thrushes throughout the west is not apparent on this map.

http://www.broadinstitute.org
http://www.broadinstitute.org
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low- quality variants (genotype quality < 30; depth < 8; minor al-
lele frequency < 0.03), as well as indels and nonbiallelic SNPs using 
vcftools (Danecek et al., 2011). Using this quality filtered set, we con-
ducted a second round of filtration by visualizing the trade- off be-
tween discarding SNPs with low coverage and discarding individuals 
with missing genotypes to determine which SNPs and individuals to 
discard in the R software program genoscapeRtools (Anderson, 2019).

2.4  |  Population structure and genoscape map

To assess population genetic structure across the hermit thrush 
breeding region, we used the software program ADMIXTURE 
(Alexander et al., 2009), a maximum likelihood model- based ap-
proach to estimate ancestry of 178 individuals (Table 1). The model 

was run with a burn- in period of 50,000, and a total run length of 
150,000 generations. We ran five iterations of each assumed num-
ber of genetic clusters (K), where K ranged from 1:7 (Figure S2). We 
used the R software program pophelper (Francis, 2017) to visualize 
each run, as well as to estimate the cross- validation error to deter-
mine the optimal K.

To create the genoscape, a spatially explicit map of genetic clus-
tering, we visualized the posterior probability of group membership 
estimates from ADMIXTURE as transparency levels of different col-
ors overlaid on a base map from Natural Earth (https://www.natur 
alear thdata.com/) and clipped this to a map of the hermit thrush 
breeding range (NatureServe, 2018). We scaled the transparency of 
colors within each distinguishable group, so that the highest poste-
rior probability of membership in the group according to structure 
was opaque and the smallest was transparent.

TA B L E  1  Sampling sites across the hermit thrush breeding range

Site Group State Site name N Latitude Longitude

1 WM NM Los Alamos 2 35.84 −106.42

2 WM AZ Pinaleno Mtn 3 32.67 −109.88

3a,b WM AZ Big Lake 5 33.88 −109.43

4 WM AZ Flagstaff 1 35.34 −111.6

5 WM AZ Jacob Lake 2 36.6 −112.18

6a,b WM UT Routes 14/18 5 37.53 −112.75

7a,b WM CA Yosemite 6 37.77941 −119.7566033

8a,b WL CA Big Basin site 1 16 37.175385 −122.21825

9a,b WL CA Big Basin site 2 5 37.166457 −122.20749

10 WL CA Bolinas 1 37.933518 −122.727446

11a,b WL BC Golden 8 51.06567125 −116.8025

12a,b WL BC Whistler 15 50.12456 −123.2933333

13 WL AK Hwy Pass/Toklat 2 63.49411 −150.09

14 WL AK Mile17 2 63.73674 −149.372

15a,b WL BC Haida Gwaii 10 53.162545 −131.8095

16a,b WL AK Sitka 5 57.0738956 −135.3395108

17 WL AK Juneau 1 58.42 −134.55

18a,b,c WL BC Prince Rupert 8 54.27972625 −130.33425

19a,c WL BC Exstew 8 54.44668872 −129.1349303

20a,c WL BC Kispiox 10 55.397947 −127.8039

21a,c N BC Maxan 10 54.26883 −126.1004

22a,c N BC Fort Fraser 12 54.10814445 −124.569797

23a,c N BC MacKenzie 5 55.10428 −122.9972

24a,c N BC Hudson's Hope 12 56.01897 −122.0631667

25a,b,c N BC Swan 10 55.516232 −120.0838

26a,b N PA Portertown 6 41.27183433 −75.177813

27a,b N ME Penobscot 8 44.846 −68.616

Note: Subspecies group: Western Mountain (WM), Western Lowland (WL), or Northern (N).
Sites 1– 27 are used in analysis of population structure. Additional symbols denote:
aSubset of 19 sites used for FST and partial Mantel tests.
bSubset of 13 sites used in the gradient forest and latent factor mixed models.
cSubset of 8 sites used in the cline analysis.

https://www.naturalearthdata.com/
https://www.naturalearthdata.com/
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2.5  |  Association between environmental 
predictors and genomic data

To determine whether changes in genetic allele frequencies were 
associated with particular environmental variables, we extracted a 
suite of 25 climate, vegetation, and anthropogenic characteristics 
from 19 sampling locations. For climate predictors, we used the 19 
bioclimatic layers available as part of the WorldClim 2.1 database 
(Hijmans et al., 2005), which captures temperature and precipitation 
measurements averaged across the time period 1970– 2000. Data 
from these layers was extracted at 30- arc second resolution (~1km2). 

We included three layers representing vegetation and characteris-
tics: (1) two measures of the normalized difference vegetation index 
(NDVI) captured by MODIS instrument (Carroll et al., 2004) that rep-
resented the maximum and standard deviation of NDVI at each loca-
tion for the year 2003 (chosen as a representation of the vegetation 
seen at each location), and (2) a layer capturing tree cover in each 
habitat (Sexton et al., 2013) at ~1km2 resolution. We used a measure 
of surface moisture estimated by the NASA Scatterometer Climate 
Record Pathfinder (QuickSCAT) representing the mean of surface 
moisture available at each site. We included the elevation at each 
site as a predictor, as captured by the Shuttle Radar Topography 

F I G U R E  2  Genotype– environment associations across the hermit thrush breeding range, indicating relatively high turnover of putatively 
adaptive alleles in western North America. (a) Gradient forest- based genomic signatures mapped to geography support climate adaptation 
across the breeding range and higher turnover of putatively adaptive allelic variation in the western region compared to the boreal and 
eastern regions. Background colors on map are based on modeled gene– environment correlations predicted at 100,000 random points 
across the breeding range. Circles on map represent sampling locations and are colored according to the corresponding genetic cluster from 
Figure 1. (b) Principal component analysis of gradient forest predictions of genomic signature. Background color represents environmental 
space, whereas circles are positioned to reflect PC scores associated with each sampling location (colored according to genetic cluster). 
The western clusters are separated throughout environmental space, whereas sites associated with the East- Taiga cluster are tightly 
grouped together. (c) Plot of relative mean within- group Euclidean distances (Environmental vs Geographic) for each genetic cluster reveals 
contrasting patterns. Each western cluster shows high environmental distances across relatively small geographic distances, whereas the 
East- Taiga cluster shows low environmental distance across large geographic distances. Numbers in parentheses represent within- cluster 
pairwise comparisons.
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Mission (SRTM, also at 30- arc second resolution and downloaded 
via the world clim.org website). Finally, we included an amalgamated 
measure of anthropogenic activity, the human influence index (HII), 
that represents nine independently collected anthropogenic activi-
ties, such as population density, construction density and land use, 
nighttime lights, and access to locations (road and rail density, coast-
lines) (WCS, 2005). Latitude and longitude were also included in the 
analysis as potential predictors and to tease apart any effects of ge-
ography (Section 2.7).

To link the potential environmental predictors to our genomic 
data at the macrogeographic scale, we used the package gradientFor-
est (Ellis et al., 2012) in R (R Core Team, 2017). For the initial gradient 
forest analysis, we ran the gradient forest using all 19 populations 
that had at least five individuals (Table 1). However, for the final gra-
dient forest analysis, we included 13 populations and excluded six 
sites from the hybrid zone. Gradient forest modeling examines the 
overall spatial distribution of genomic variation across a landscape 
(Bay et al., 2018; Fitzpatrick & Keller, 2015). Gradient forests are 
rooted in random forest models (Breiman, 2001), and attempt to link 
multiple responses (in this case, allelic variation across the genome 
between populations) to predictor variables (in this case, the above- 
described environmental characteristics of each population) using a 
bifurcating, iterative, nonparametric regression algorithm. The re-
sults of these regressions are an estimate of the number of responses 
with significant associations with predictor variables, an estimate of 
the strength of such associations, and a ranking of the predictor vari-
ables relative to one another across all responses tested. An advan-
tage of these models is that they are iterative in nature, and because 
they withhold both records and predictor variables randomly with 
each iteration, they are largely immune to biases due to multicol-
linearity and/or spurious correlations. We compared these observed 
results with those obtained from gradient forests that were run with 
randomized matches between genomic and environmental records 
(n = 50), to estimate the difference between our observed associ-
ations between environment and genomic data as compared with 
randomized ones.

2.6  |  Predicting genomic turnover across the 
breeding range

To create a spatially explicit visualization illustrating how genomic 
variation changes with environmental conditions across geographic 
and environmental space, we generated a map and PC plot as fol-
lows. We used the estimated relationship between genomic data 
and environment of the hermit thrush, as revealed by gradient for-
ests, to predict the changes in genomic variation across the entire 
range of the species. Due to the fact that this variation is based on 
loci linked to environment variables, we refer to these changes as 
putatively adaptive allelic turnover. We estimated this putatively 
adaptive allelic turnover by randomly selecting 10,000 geographic 
points across the range of the hermit thrush and extracting the val-
ues of the three environmental variables most strongly correlated 

with genomic variation, as determined by the gradient forest model 
run on the 13 sites. We then predicted the genomic variation at 
each of these sites based on the relationship between genomics and 
these environmental variables obtained from gradient forest model 
run on the 13 sites. We then used ordinary kriging to interpolate 
between unsampled locations across the breeding range (Oliver & 
Webster, 1990).

2.7  |  Association between geographic distance, 
environmental distance, and genomic data

To assess the relationship between geographic, environmental, and 
genetic distances, we also calculated pairwise FST across all quality 
filtered SNPs using the R package assigner version 0.5.6 (Gosselin 
et al., 2019). Here, we used the hierfstat model (Goudet, 2005) to 
also provide confidence intervals surrounding the FST estimates. For 
FST and subsequent analyses incorporating environmental and geo-
graphic distance (Table 1), we included all 19 populations that had 
at least 5 individuals. Geographic distance was calculated using the 
package geosphere (Hijmans, 2019) which calculates the distances 
using the Vincenty inverse formula for ellipsoids to account for the 
curve of the earth. Environmental distance between sites was calcu-
lated as the Euclidean distances based on the top three environmen-
tal variables identified in gradient forest (mean diurnal temperature 
range (BIO2), temperature seasonality (BIO4), and annual tempera-
ture range (BIO7)) using the function dist in R (R Core Team, 2019).

To determine the influence of geographic distance versus en-
vironmental distance on patterns of genomic variation across the 
hermit thrush breeding range, we performed several tests. First, 
we included the mean latitude and longitude of each population as 
predictors in the gradient forest runs (for a total of 27 potential pre-
dictors, Table S1), allowing the influence of geography to compete 
directly with environmental predictors at each site. Second, to create 
a visual comparison of the relative influence of geography vs environ-
ment on genetic distances, we calculated, within each genetic cluster 
(based on population structure analysis described in Section 2.4), the 
relative mean within- group Euclidean distance for geography versus 
the relative mean within- group Euclidean distance for environment. 
Third, we performed partial Mantel tests between FST, geographic dis-
tance, and environmental distance using R package vegan (Oksanen 
et al., 2015) for the 19 populations. In addition, to test whether iso-
lation by environment is more important than isolation by distance in 
the western lineage compared with the eastern lineage, we ran the 
partial Mantel tests for the two lineages separately.

2.8  |  Identifying candidate loci for top 
climatic variables

At the macrogeographic scale, to identify candidate variants that 
were strongly associated with the rangewide environmental predic-
tors, we ran latent factor mixed models (LFMM) (Frichot et al., 2013) 

http://worldclim.org
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for the same 13 sites included in the final gradient forest analysis (i.e., 
this excluded six sites from the hybrid zone) (Table 1). These mod-
els are statistical regression models to test associations between a 
multidimensional set of response variables (i.e., genotypes) and a set 
of variables of interest (i.e., environmental variables), while correct-
ing the model for confounding effects such as population structure. 
Here, we tested for correlations between all quality filtered SNPs 
and the top- ranking uncorrelated environmental variables identi-
fied in the gradient forest analyses (mean diurnal temperature range 
(BIO2), temperature seasonality (BIO4), and maximum temperature 
of the warmest month (BIO5)) whose Pearson's correlation coeffi-
cient was 0.75 or less. For each of the environmental variables from 
the gradient forest analysis, we ran five separate MCMC runs using 
the Bayesian LFMM version 1.5 (Frichot et al., 2013) with a latent fac-
tor of K = 5, based on an initial PCA to identify underlying genetic 
structure with the prcomp function in the stats v3.6.2 package in 
R (R Core Team, 2020). p- Values from all five runs were combined 
and adjusted for multiple tests using a false discovery rate (FDR) 
correction.

To compare candidate loci associations across geographic scales, 
we additionally ran LFMM for mean diurnal temperature range 
(BIO2), temperature seasonality (BIO4), and maximum temperature 
of the warmest month (BIO5) (i.e., top uncorrelated environmental 
variables from macrogeographic scale) for the populations within 
the hybrid zone using the same parameters used for the previous 
analysis. This identified the top 10 candidate loci for mean diurnal 
temperature range (BIO2), temperature seasonality (BIO4), and max-
imum temperature of the warmest month (BIO5) at the microgeo-
graphic scale and their association within the hybrid zone. Across 
the eight hybrid zone sites in British Columbia (Table 1), we mapped 
allele frequencies of the top rangewide candidate locus associated 
with each of the top three uncorrelated environmental variables, 
which was overlaid on a background showing changes in the associ-
ated bioclimatic variable across the hybrid zone.

For candidate loci found to be highly ranked at both macro-  and 
microgeographic scales, we subsequently investigated the closest 
genic region. To do this, we used the Satsuma synteny program 
(Grabherr et al., 2010) to align the hermit thrush genome to the 
Zebra Finch chromosomal genome assembly, converting the scaf-
fold position to a chromosomal position with an associated anno-
tation. We used NCBI blast by generating DNA sequence segments 
that include 200 bp surrounding each candidate loci and blasting the 
segment against the Zebra Finch genome. We also extended our ex-
ploration to genes within 25 kb upstream or downstream of our top 
candidate variants, which we assume is within the distances before 
which LD should break down (Backström et al., 2006).

2.9  |  Cline analysis

We used the program HZAR (hybrid zone analysis for R) (Derryberry 
et al., 2014), implemented in the R programming environment (R Core 
Team, 2019), to fit all clines and perform all clinal analyses across the 

eight hybrid zone sampling locations in British Columbia (Table 1). 
First, we fit the best of three models (as determined with AIC com-
parisons) to the ancestry proportions calculated in ADMIXTURE 
(K = 2), as well as the population- scaled and transformed environ-
mental PC values and each variable separately. Each model was 
used to predict cline parameters (center and width). In addition to 
the null model, the models used for the cline fitting were as follows: 
model I: no exponential tail is desired; model II: a model where just 
one exponential tail on the right is desired; and model III: where two 
exponential tails mirrored about the cline center is desired. We ran 
each model on three chains, for 1 × 106 generations with a 10% burn-
 in period. We assessed convergence using trace plots and once the 
best model had been selected, it was used to plot the best fit cline 
for the observed data, as well as the confidence interval around the 
cline. We additionally looked at the cline of allele frequencies of top 
candidate loci identified in the rangewide LFMM analyses.

3  |  RESULTS

3.1  |  Genome assembly, SNP discovery, and SNP 
filtering

The final size of the assembled genome was 1.034 Gb, comparable 
to the average size of bird genomes, which is remarkably conserved 
across avian taxa (Gregory, 2005; Zhang et al., 2014). The scaffold 
N50 was 35.7 Mb and the longest scaffold was 105.36 Mb. GC- 
content of the genome was 41.86%. The scaffold N90 was 2.23 Mb; 
90% of the total length of the assembly lies in 40 scaffolds greater 
than this length.

In total, we identified 4,703,497 variants across the genome. We 
filtered out variants with greater than 10% missing genotypes and 
variants with a minor allele frequency less than 3%. We additionally 
discarded low coverage individuals missing more than 25% of SNPs 
for a final set of 90,439 SNPs and 178 individuals (Table 1).

3.2  |  Population structure

We identified five genetic clusters across the breeding range 
(Figure 1 and Table 1). The genomic breaks in the ADMIXTURE plot 
at K = 3 (Figure S2) are consistent with the three main subspe-
cies groupings. At K = 5, the Western Lowland subspecies group 
is further subdivided based on additional genomic breaks within 
this group (Figure 1). The blue genetic cluster, which we refer to 
as East- Taiga, spans from the East coast across Canada to central 
British Columbia (sites 24– 27 have little to no admixture) and corre-
sponds to the Northern subspecies group. The pink genetic cluster, 
which we refer to as West- Interior, occupies the Madrean and Rocky 
Mountain ranges (sites 1– 6 have no admixture) and corresponds to 
the Western Mountain subspecies group. The remaining three ge-
netic clusters occur along the West coast, where they segregate 
by latitude. In aggregate, they correspond to the Western Lowland 
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subspecies group. The West- North cluster (yellow) is found in Alaska 
and northwestern British Columbia (sites 13– 15 have no admix-
ture). The West- Central cluster (green) is found in southern British 
Columbia (site 11 has no admixture). Finally, the West- South cluster 
(orange) is found in California (sites 8– 10 have no admixture). There 
are several locations across the range with admixture (Figure 1 and 
Table 1), including site 7 in Yosemite, CA, sites 16– 17 in southeast 
Alaska, and sites 12 and 18– 23 in British Columbia.

3.3  |  Association between geography, 
environment, and genomic data

When we analyze all the western sites together, the contrasting pat-
terns between the eastern and western lineages emerge. Across all 
sites, we find a wide range of FST values (0.0003– 0.1788). As ex-
pected, the highest values of FST occur between the eastern and 
western lineages (Table S2). When the two lineages are analyzed 
separately, we observe relatively low FST values within the eastern 
lineage and high FST values within the western lineage (including for 
pairwise comparisons among sites with similar geographic distances, 
for example, site 24 to 27 vs. site 3 to 17) (Figure 1 and Table S2). 
Partial Mantel tests consistently reveal contrasting patterns for 
eastern and western lineages when analyzed separately (Table S3). 
The western lineage shows significant patterns of isolation by en-
vironment (r = 0.414, p = 0.01) and isolation by distance (r = 0.657, 
p = 0.001). In contrast, the eastern lineage shows no evidence of iso-
lation by environment (r = 0.189, p = 0.176) or isolation by distance 
(r = 0.181, p = 0.114).

3.4  |  Association between environmental 
predictors and genomic data

We found a strong relationship between environmental variables 
and genomic variation in our rangewide analysis of hermit thrushes. 
Important predictors in our 13 site model were BIO2 = mean diur-
nal temperature range (mean of monthly [max temp –  min temp]), 
BIO4 = temperature seasonality (standard deviation × 100), and 
BIO7 = annual temperature range (max temp of warmest month 
–  min temp of coldest month) (Table S1). Each of these variables 
explained a larger portion of genomic variation than latitude or 
longitude (Table S1) and suggest a stronger association between 
environment and genomic variation than could be explained by ge-
ography alone. Of the 90,439 loci that were included in the gradient 
forest analysis, over 47% (n = 42,561) were able to be explained by 
available predictors (e.g., R2 greater than 0), and these responses had 
an average correlation of R2 = 0.26 with predictor variables. These 
responses were significantly greater in number and correlation value 
than those gradient forests where genomic signatures and predictors 
were randomized with respect to one another (p < 0.01, Figure S3). 
Even when considering predictors that are not highly correlated 
(Pearson's correlation coefficient <0.75) (Table S4), the top two 

predictors (BIO2 = mean diurnal temperature range, BIO4 = tem-
perature seasonality) remain the same, and the third ranked variable 
is replaced by another temperature metric (BIO5 = maximum tem-
perature of the warmest month).

3.5  |  Predicting genomic turnover across the 
breeding range

Gradient forest analysis also allowed for visualization of environmen-
tally associated allelic variation at the broad spatial scale (Figure 2a), 
revealing strong differences across the breeding range. Changes in 
background color on the map represent turnover in the relationship 
between environmental variables and these putatively adaptive al-
leles. The map shows high variation in genotype– environment asso-
ciations (i.e., high turnover) across relatively small geographic areas 
throughout the west; this contrasts the low variation in genotype– 
environment associations (i.e., low turnover of alleles) across the 
large geographic area spanning from central British Columbia to the 
East coast (Figure 2a). On the map, circles indicate the sampling sites 
and are color coded to represent the genetic cluster associated with 
the corresponding site on the genoscape map (Figure 1).

The PC plot (Figure 2b) represents environmental space and in-
cludes vectors for important environmental predictors (mean diur-
nal temperature range (BIO2), temperature seasonality (BIO4), and 
annual temperature range (BIO7)). These variables are all related 
to temperature. Thus, the pattern is predicted by climate variables 
generally, and specifically with respect to temperature. The top 
three uncorrelated environmental predictors are all related to tem-
perature as well. BIO2 and BIO4 stay the same, and BIO5 replaces 
BIO7 (as BIO4 and BIO7 are correlated) (Table S2). We keep both 
BIO4 and BIO7 here as gradient forest models are largely immune 
to collinearity; however, we consider only the uncorrelated variables 
when we selected variables to explore as part of rangewide LFMM 
and analyses for the hybrid zone (Section 3.6).

For visualization purposes, the PC plot is oriented such that the 
background color representing environmental space (Figure 2b) 
corresponds spatially to the background color representing en-
vironmentally associated allelic variation on the map (Figure 2a). 
The PC plot indicates where the 13 sampling sites are distributed 
in environmental space relative to one another (i.e., separating 
out or grouping together), and each site is colored according to 
its genetic cluster in Figure 1. Sites associated with the East- Taiga 
genetic cluster (blue circles) are grouped tightly within the PC plot 
(Figure 2b). This indicates very little environmental variation be-
tween East- Taiga sites despite large pairwise geographic distances 
between some of them (Figure 2a,c), thus substantiating the low 
variation in genotype– environment associations across this area. 
In contrast, within the western region, sites associated with each 
genetic cluster (pink, orange, yellow, and green circles) are dis-
persed throughout the PC plot (Figure 2b). This indicates relatively 
high environmental variation (i.e., high environmental heteroge-
neity) between sites despite shorter geographic distances within 
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each cluster (Figure 2a,c), thus substantiating the high variation in 
genotype– environment associations across the west. The bar chart 
(Figure 2c) provides a side- by- side comparison of sites grouped 
according to each of the five genetic clusters from the genoscape 
(Figure 1). For the East- Taiga cluster, environmental distance is low 
relative to large geographic distances. The opposite pattern exists 
for most of the western clusters, where environmental distance is 
high compared with relatively small geographic distances.

3.6  |  Identification of candidate loci for top 
climatic variables

To investigate genomic loci potentially involved in climate ad-
aptation of hermit thrush populations, we used LFMM (Frichot 
et al., 2013) to identify 2848 genomic loci associated with the top 
three uncorrelated climatic variables ranked in the rangewide gra-
dient forest analyses described above, which excluded six of the 
hybrid zone populations. We identified 2138 candidate variants 
associated with mean diurnal temperature range (BIO2), 1112 as-
sociated with temperature seasonality (BIO4), and 1375 associ-
ated with maximum temperature of the warmest month (BIO5). 
We identified the top 10 variants associated with each of the top 
three uncorrelated climatic predictors on the macrogeographic 
scale (Figure S4), and we determined that these loci varied in their 
importance within the hybrid zone (i.e., ranking of association 
across the hybrid zone) (Figure S5). No variants associated with 
mean diurnal temperature range (BIO2) or maximum temperature 
of the warmest month (BIO5) overlap as a highly ranked candidate 
locus at both scales. However, two variants rose to the top at both 
scales, and they were both associated with temperature seasonal-
ity (BIO4).

3.7  |  Hybrid zone analysis

At the microgeographic scale, when tracking the allele frequency 
changes across the hybrid zone, the pattern varies between the 
top temperature- associated candidate loci. Figure 3 shows the al-
lele frequency changes overlaid on a background representing the 
raw environmental data for mean diurnal temperature range (BIO2), 
temperature seasonality (BIO4), and maximum temperature of the 
warmest month (BIO5). The top candidate locus associated with 
mean diurnal temperature range (BIO2) is fixed and shows no change 
in allele frequency (Figure 3a), while the top candidate locus associ-
ated with maximum temperature of the warmest month (BIO5) does 
show an allele frequency shift across the cline (Figure 3c). The top 
candidate locus associated with temperature seasonality (BIO4) not 
only shifts in frequency across the hybrid zone but also tracks the 
gradient of the associated bioclimatic variable (Figure 3b). Notably, 
it was this locus along with the second top candidate locus (both as-
sociated with temperature seasonality (BIO4)) (Figures S4b and S5b) 

that overlap as important candidates at both the micro-  and macro-
geographic scales. These top two variants for temperature season-
ality (BIO4) were both found in the same genomic region, and our 
analyses indicate this region to be on chromosome 2, upstream of 
the uncharacterized protein LOC105759009 and the prolactin gene, 
PRL. Thus, the changes in allele frequency of these two candidate 
variants (both falling near the prolactin gene, PRL) are closely aligned 
with a gradient in temperature seasonality (BIO4) across British 
Columbia.

HZAR clines were calculated for population specific measures 
of RADseq ancestry, environmental space defined by scaled top 
rangewide uncorrelated climatic variables, and candidate loci as-
sociated with two of the top environmental predictors (as identi-
fied by LFMM in the broadscale analysis) (Figure 4). Mean diurnal 
temperature range (BIO2) is not included here as the allele fre-
quencies of the top two candidate loci were fixed (Figure 3a). 
The ancestry cline was steep and narrow, centered at 264.9 km 
(range = 252.0– 273.7 km) with a width of 24.3 km (range = 6.0– 
27.1 km). The Environmental PC1 cline was shallower and shifted 
left (center = 206.5 km, width = 196.2 km). The clines of the two 
candidate loci associated with temperature seasonality (BIO4) fol-
low a pattern similar to the Environmental PC1 cline, whereas the 
clines of the two candidate loci associated with maximum tem-
perature of the warmest month (BIO5) are more similar to the ge-
nomic cline (Figure 4).

4  |  DISCUSSION

Genotype– environment association analyses at the macrogeo-
graphic scale support the hypothesis of higher turnover of putatively 
adaptive alleles in the western breeding range of hermit thrushes 
compared with eastern and boreal breeding areas. This is consistent 
with known variation in fitness- related phenotypic traits, which is 
also highest throughout the western region (Dellinger et al., 2020). 
Bioclimatic variables associated with temperature are important 
predictors of these broadscale patterns, and we identify loci that are 
associated with the top- ranking uncorrelated temperature variables 
after accounting for rangewide population structure. As broadscale 
analyses inherently reflect a composite of many local populations 
and thus represent an overarching generalized pattern (Hoban 
et al., 2016; Rellstab et al., 2015), we investigate whether the mac-
rogeographic pattern can be validated at the microgeographic scale. 
Although there is variation in the importance of rangewide predic-
tors, our hybrid zone analysis confirms that temperature is likely an 
important driver of putative local adaptation in British Columbia, 
where we find low gene flow between ecotypes and a potential role 
for ecological selection driven by a temperature gradient. Here, we 
discuss possible ecological and evolutionary mechanisms underlying 
the patterns at both spatial scales, and we then address the con-
servation implications of geographic variation in the distribution of 
climate- linked putatively adaptive genetic variation.
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F I G U R E  3  Variation in patterns of 
allele frequency changes across the hybrid 
zone in British Columbia for temperature- 
associated top candidate loci identified 
in the rangewide analysis. (a) Allele 
frequency for the top candidate locus 
associated with mean diurnal temperature 
range (BIO2) is fixed. (b) Allele frequency 
for the top candidate locus associated 
with temperature seasonality (BIO4) 
shows a large shift close to the coast. (c) 
Allele frequency for the top candidate 
locus associated with maximum 
temperature of the warmest month (BIO5) 
shows a large shift farther inland. The 
color within each circle represents the 
frequency of the highest ranked allele 
(as determined by the rangewide LFMM 
analyses) across the eight sampling sites, 
while the underlying map represents the 
gradient across the hybrid zone of the 
associated bioclimatic variable.

(a)

(b)

(c)
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4.1  |  Climate- associated genomic diversity 
across the breeding range

Our study supports a role for the environment in shaping intraspecific 
genomic diversity at the macrogeographic scale, including an uneven 
spatial distribution of putative adaptive genetic variation across the 
breeding range. In particular, high population structure (Figure 1) 
and high variation in genotype– environment associations through-
out the west (Figure 2a,b) starkly contrasts low population struc-
ture and a lack of variation in genotype– environment associations 
throughout the eastern and boreal regions. Gradient forest revealed 
strong support for temperature- associated genetic diversity above 
what was expected by chance, indicating that this pattern does not 
merely reflect neutral population structure (Ellis et al., 2012). LFMM 
further revealed candidate loci strongly associated with mean diur-
nal temperature range (BIO2), temperature seasonality (BIO4), and 
maximum temperature of the warmest month (BIO5) after account-
ing for population structure (Frichot et al., 2013).

The comparison between east and west in geographic and 
environmental distance further supports a strong role for the 

environment in driving patterns of genetic diversity. If geographic 
distance was an important factor, we would predict more divergence 
in the east compared to the west; however, we found the opposite. 
In hermit thrushes, the pattern and environmental predictors of 
putative adaptive genetic variation parallel those for beta diver-
sity (i.e., high turnover) of bird species in North America (McKnight 
et al., 2007; Melo et al., 2009; Veech & Crist, 2007). Although not 
identical, the environmental predictors (e.g., temperature range/
seasonality for hermit thrushes vs. topographic heterogeneity and 
variation in transpiration rates for avian beta diversity) are highly 
correlated in the mountainous areas of western North America 
(Goulden et al., 2012; Roche et al., 2020), thus supporting a potential 
role for environmental heterogeneity in shaping patterns of avian 
diversity in western North America.

Higher turnover of putatively adaptive alleles in the west is con-
cordant with high morphological diversity in fitness- related traits 
(Dellinger et al., 2020). Although this needs to be tested directly, it 
supports the idea that environmental variation related to tempera-
ture may be important for divergence in traits related to thermal 
tolerance throughout the western range of hermit thrushes. Similar 
genotype– temperature correlations have been associated with eco-
logically relevant physiological traits including heat stress in wil-
low flycatchers (Ruegg et al., 2018), providing insight into possible 
mechanisms underlying temperature- related climate adaptations. 
Additional heritable traits associated with temperature and ther-
moregulation in birds include melanin- based pigmentation (Galván 
et al., 2018; Romano et al., 2019), bill size (Romano et al., 2021; 
Tattersall et al., 2017), and wing length (Romano et al., 2021). Western 
subspecies of hermit thrushes vary extensively in both plumage col-
oration and morphometrics (Aldrich, 1968). Thus, we propose that 
future research include a genome- wide association study (GWAS), 
which is needed to directly test for correlations between high turn-
over of putatively adaptive alleles and specific fitness- related phe-
notypic traits in western populations of hermit thrushes.

Although in this study we focus on putative adaptive variation, 
we do not discount the role of historical processes in structuring 
genetic variation across the breeding range. For example, some of 
the observed patterns could also be explained by neutral or adaptive 
divergence in the past that is currently maintained by contempo-
rary barriers to gene flow (Hewitt, 2004; Shafer et al., 2010; Weir 
& Schluter, 2004). Our genoscape map corroborates genomic splits 
between the three main groups of subspecies (Figure 1, Figure S1). 
A previous study of hermit thrushes dated the major split between 
Western Lowland and Northern groups to the Last Glacial Maximum 
(Alvarado et al., 2014) and other studies of avian species occupying 
the same range suggest the Western Mountain group likely split from 
the Western Lowland group during the Pleistocene as well (Dohms 
et al., 2017; van Els et al., 2012; Weir & Schluter, 2004). However, 
our genoscape analyses uncovered two additional genomic breaks 
along the Pacific coast within the range of the Western Lowland sub-
species group, which has the most subspecific variation (Dellinger 
et al., 2020). An updated demographic analysis of hermit thrushes 
is necessary to tease apart historical vs. contemporary and neutral 

F I G U R E  4  Geographic cline plots show the relationship 
between the genomic cline, temperature gradient, and candidate 
loci across the hybrid zone in British Columbia. The clines for 
candidate loci associated with temperature seasonality (BIO4) 
(gray open squares and circles) and Environmental PC1 (black 
diamonds) are shifted to the left of the genomic cline (RADseq; 
black triangles), which represents the ancestry estimates 
from the full genomic dataset (90,439 SNPs) with a K = 2. The 
Environmental PC1 cline (black diamonds) represents scaled top 
uncorrelated climatic variables (mean diurnal temperature range 
(BIO2), temperature seasonality (BIO4), and maximum temperature 
of the warmest month (BIO5)) identified by the gradient forest 
analysis. The clines for the candidate loci associated with maximum 
temperature of the warmest month (BIO5) are closely associated 
with the genomic cline. Candidate loci associated with mean diurnal 
temperature range (BIO2) are fixed and are not included here.
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vs. adaptive processes (Gutenkunst et al., 2009; Liu & Fu, 2015). 
However, continuously distributed divergent populations that re-
sulted from secondary contact provide an opportunity to investigate 
how historical differences can be maintained via contemporary bar-
riers to gene flow and/or recurrent selection (Barton & Gale, 1993; 
Garrick et al., 2019; Jones et al., 2013; Rellstab et al., 2015). Our 
investigation at the hybrid zone (Section 4.2) between the Western 
Lowland and Northern subspecies groups (i.e., representing the sec-
ondary contact zone between the western and eastern lineages) re-
veals how deep historical divisions can continue to be sculpted by 
the current environment.

4.2  |  Temperature associations across a local 
hybrid zone

Since the pattern at the macrogeographic scale represents an ag-
gregate of ecological and evolutionary processes occurring at the 
microgeographic scale (Hoban et al., 2016; Rellstab et al., 2015), we 
investigate whether the rangewide environmental predictors and 
associated candidate loci are corroborated at the local scale. Our 
study indicates that the rangewide environmental predictors and the 
associated loci vary in their importance within the hybrid zone in 
British Columbia. Specifically, rangewide LFMM analyses identified 
SNPs that are strongly associated with the top uncorrelated environ-
mental variables, which are all temperature related (i.e., mean diurnal 
temperature range (BIO2), temperature seasonality (BIO4), and max-
imum temperature of the warmest month (BIO5)). When mapped 
across the hybrid zone, however, the rangewide top candidate loci 
associated with diurnal temperature range (BIO2) show no variation 
in allele frequency, whereas the loci associated with temperature 
seasonality and maximum temperature of the warmest month (BIO4 
and BIO5, respectively) exhibit clinal changes in allele frequency at 
the microgeographic scale (Figures 3 and 4). Only the top two can-
didate loci associated with temperature seasonality (BIO4) track the 
temperature gradient across the cline, suggesting a temperature- 
associated barrier to gene flow and/or ecological selection (Kirk & 
Freeland, 2011; Rundle & Nosil, 2005; Vines et al., 2016). Notably, 
these are the two candidate variants identified as important at both 
scales. Although we may find more loci that are top candidates at 
both scales if we searched within all 27 environmental variables, we 
highlight these loci as it was mean diurnal temperature range (BIO2), 
temperature seasonality (BIO4), and maximum temperature of the 
warmest month (BIO5) that surfaced as the most important uncor-
related predictors at the rangewide scale.

Within the genome, the candidate loci we narrowed down as 
being important at both the macrogeographic scale rangewide and 
microgeographic scale of the hybrid zone fall near the prolactin gene 
PRL (Wilkanowska et al., 2014). Prolactin is a hormone that, in birds, 
has been linked to environmental conditions, stress, and repro-
duction (Angelier et al., 2016). Environmental stressors that affect 
avian prolactin levels include heat (Dawson & Sharp, 2010; Gahali 
et al., 2001; Rozenboim et al., 2004), drought (Delehanty et al., 1997), 

and food availability (Koch et al., 2004; Riechert et al., 2014). We do 
not want to overinflate the relevance of prolactin in this study sys-
tem. Importantly, confirmation of allele frequency shifts of the pro-
lactin gene itself as well as functional tests confirming its biological 
significance in hermit thrushes would be necessary before making 
any inferences. Nevertheless, as the loci situated near the prolactin 
gene were the only candidates identified as highly ranked at both 
spatial scales, it provides a possible avenue for future molecular re-
search in this system, especially given its association with heat stress 
as well as onset of reproduction (Angelier et al., 2016; Dawson & 
Sharp, 2010; Gahali et al., 2001; Rozenboim et al., 2004).

The clines for the top two candidate loci associated with tem-
perature seasonality (BIO4) are shifted westward compared to 
the extremely steep cline observed for the full genomic dataset 
(Figure 4). Similarly, temperature shifts along the hybrid zone tran-
sect in British Columbia are also shifted westward in comparison to 
a major habitat shift (Hamann & Wang, 2006), which appears to co-
incide more closely with the major genomic break. This suggests that 
temperature- related barriers to gene flow and/or ecological selec-
tion (Barton & Hewitt, 1985; Rice et al., 2011; Rundle & Nosil, 2005) 
may be operating separately from other ecological drivers such as 
habitat (Vines et al., 2016). To further explore the differences in 
cline shape, detailed investigations of exogenous factors (e.g., tem-
perature, habitat, and behavioral differences) as well as potential 
endogenous factors (e.g., genetic incompatibility and hybrid steril-
ity) are warranted (Bierne et al., 2011; Carling & Brumfield, 2008; 
Fitzpatrick & Shaffer, 2004).

It is also informative that the top rangewide candidate loci as-
sociated with mean diurnal temperature range (BIO2) do not show 
any clinal variation across the hybrid zone. This confirms that not 
all of the candidate loci associated with the top rangewide envi-
ronmental predictors are expected to show a clinal pattern at a 
local scale (Poncet et al., 2010; Rellstab et al., 2015). Instead, pat-
terns of concordance may vary predictably across hybrid zones 
in this system, and some of this variation may be detectable at 
the broad scale. Rangewide, Figure 2b indicates that mean diurnal 
temperature range (BIO2) differentiates populations across PC2 
(and thus likely plays a stronger role across latitude). In contrast, 
temperature seasonality (BIO4) differentiates populations across 
PC1 (and thus likely plays a stronger role across longitude, as seen 
at this west to east- oriented hybrid zone in British Columbia) 
(Figure 2b). Although more sampling is required to replicate these 
analyses, we propose that future work investigate other microgeo-
graphic sites to identify how patterns compare to British Columbia 
(Gugger et al., 2021). Another potential west to east- oriented con-
tact zone between the West- South and West- Interior clusters in 
the Sierra Nevada mountain range of California could serve as a 
replicate to investigate parallel drivers of divergence (i.e., tem-
perature seasonality, or BIO4) and top- associated candidate loci 
(i.e., candidate variants near the PRL gene) across a longitudinal 
gradient. Conversely, a potential north to south- oriented contact 
zone in the Pacific Northwest between clusters in California and 
British Columbia could test the prediction that other temperature 
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variables such as mean diurnal temperature range (BIO2) and its 
associated candidate loci are important across latitudinal gradi-
ents in the western region.

4.3  |  Implications for conservation and  
management

Informed conservation efforts on the breeding grounds of wildlife 
should account for geographic variation in the adaptive potential of 
populations (Funk et al., 2019). High levels of putatively adaptive ge-
netic variation coinciding with large phenotypic and behavioral dif-
ferences among western ecotypes of hermit thrushes may reflect 
high potential for rapid evolutionary change (Morgan et al., 2020; 
Thomassen et al., 2011), as they likely contain the raw material for 
ongoing natural selection to act upon (Lawson & Petren, 2017). Also, 
because genotype– environment associations include temperature 
regimes as the strongest predictors of genomic variation, this spe-
cies may be especially sensitive to climate change. Under future 
climate scenarios that indicate increased average surface tempera-
tures of 1– 4°C (IPCC, 2018), the aggregate of western populations 
of hermit thrushes as a whole could provide a reservoir of standing 
genomic and phenotypic variation to potentially buffer against these 
changes. Thus, local extinctions or population reductions through-
out the west may have greater impact on loss of genetic diversity 
and adaptive potential of hermit thrushes than formerly realized. 
Preserving such reservoirs of adaptive potential is especially rel-
evant because while some species or populations may shift their 
ranges (MacLean & Beissinger, 2017; Pacifici et al., 2015), others 
may be required to adjust to climate change in situ via plastic or ge-
netic responses (Bay et al., 2018; Fitzpatrick & Keller, 2015; Ruegg 
et al., 2018; Williams et al., 2008).

Consideration of genotype– environment associations as well as 
degree of threat (Hoekstra et al., 2005; Tulloch et al., 2015) to pop-
ulations could inform management strategies for breeding ground 
populations. One group in particular that may be especially vulnera-
ble is the West- South cluster occupying coastal California (Figures 1 
and 2). This ecotype, traditionally identified as the Monterey hermit 
thrush (C.g. slevini), may potentially be considered an evolutionary 
significant unit (Funk et al., 2012, 2019; Moritz, 1994), based on 
its unique gene– environment correlations and potential adaptive 
differences (Nelson et al., 2016, 2021). Furthermore, this group is 
currently experiencing heightened threat levels due to fires (Bock & 
Lynch, 1970; Goss et al., 2020; Nelson et al., 2021; Taillie et al., 2018) 
and ongoing habitat destruction (Kalinowski & Johnson, 2010; 
Pidgeon et al., 2007). Greater sampling coverage in the Pacific 
Northwest would inform our understanding of the northern lim-
its of this ecotype's geographic range and the extent of gene flow 
with other ecotypes. Addressing sampling gaps within the expan-
sive area occupied by the East- Taiga cluster (Figures 1 and 2) is also 
worthwhile, even though it is unlikely that hidden genetic variation 
is harbored within central Canada. This group occupies areas of 
high latitude which are predicted to be heavily impacted by climate 

change (Bateman et al., 2020); therefore anticipating its response 
to future environmental change will be important (DesGranges & 
Morneau, 2010; Stralberg et al., 2019).

5  |  CONCLUSION

Our study reveals how investigations at the microgeographic and 
macrogeographic scales can complement one another. We find 
higher turnover of putatively adaptive alleles in western North 
America compared to eastern and boreal regions, and this could be 
due to high environmental heterogeneity in the west. The main en-
vironmental predictors of the pattern uncovered at the macrogeo-
graphic scale are all related to temperature; however, these vary in 
importance at the microgeographic scale. Only the candidate loci 
associated with temperature seasonality (BIO4) stand out as highly 
ranked at both scales. At the hybrid zone in British Columbia, we 
also find concordance of these particular candidate loci with a 
temperature- related gradient, suggesting potential temperature- 
driven barriers to gene flow and/or a role for temperature- related 
ecological selection in maintaining putative local adaptation. Thus, 
we confirm that the hybrid zone analysis can be used to validate 
some aspects of the broadscale analysis and can expose possible 
ecological and evolutionary mechanisms underlying putative climate 
adaptation detected at the broad scale. From a conservation per-
spective, high levels of putatively adaptive genetic variation coincid-
ing with large phenotypic and behavioral differences among distinct 
hermit thrush ecotypes throughout the west may reflect high adap-
tive potential, which is becoming increasingly important as species 
may be required to adapt in situ to rapid environmental change. As a 
sense of urgency for conservation action climbs, there are enhanced 
opportunities to learn about the potential impacts of climate change 
from species, such as the hermit thrush, for which temperature is an 
important predictor of putative local adaptation.
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