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Abstract

Methods for determining patterns of migratory connectivity in animal ecology have

historically been limited due to logistical challenges. Recent progress in studying

migratory bird connectivity has been made using genetic and stable-isotope markers to

assign migratory individuals to their breeding grounds. Here, we present a novel Baye-

sian approach to jointly leverage genetic and isotopic markers and we test its utility

on two migratory passerine bird species. Our approach represents a principled model-

based combination of genetic and isotope data from samples collected on the breeding

grounds and is able to achieve levels of assignment accuracy that exceed those of

either method alone. When applied at large scale the method can reveal specific migra-

tory connectivity patterns. In Wilson’s warblers (Wilsonia pusilla), we detect a sub-

group of birds wintering in Baja that uniquely migrate preferentially from the coastal

Pacific Northwest. Our approach is implemented in a way that is easily extended to

accommodate additional sources of information (e.g. bi-allelic markers, species distri-

bution models, etc.) or adapted to other species or assignment problems.
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Introduction

Almost 20% of the worlds 10 000 bird species undertake

long distance migrations (Sekercioglu 2007), but migra-

tory connectivity – the geographic link between individ-

uals or populations at different stages of their annual

cycle, such as between breeding and wintering areas of

migratory birds – has been described in relatively few

cases and so remains poorly understood. Eliciting pat-

terns in connectivity is useful for understanding the

ecology and evolutionary dynamics of species, such as

how demographic events across the annual cycle influ-

ence one another (Marra et al. 1998; Webster et al. 2002),

and is increasingly important for understanding disease

transmission routes and for making informed conserva-

tion decisions (Marra et al. 2011; Fuller et al. 2012). For

example, pathogens carried by migratory birds, such as

Influenza, West Nile and Salmonella, significantly

Correspondence: Thomas B. Smith, Fax: 310-825-5446; E-mail:

tbsmith@ucla.edu or John Novembre, Fax: 773-834-0505;

E-mail: jnovembre@ucla.edu

© 2013 John Wiley & Sons Ltd

Molecular Ecology (2013) 22, 4163–4176 doi: 10.1111/mec.12393



impact domestic animal and human health and there is

an urgent need to understand how spillover of patho-

gens from local hosts and migratory birds may change

under climate warming (Fuller et al. 2012). Further,

many songbird populations are declining, but it has

often proven difficult to link breeding and wintering

populations at fine enough geographic scales to deter-

mine the causes of declines in particular populations of

migratory birds (Lovette et al. 2004; Faaborg et al. 2010).

While there is a great deal of valuable information

available on the breeding and wintering localities of

North American birds that has been painstakingly col-

lected (Jones & Donovan 1996; Ammon & Gilbert 1999),

additional information on the connectivity of individual

populations is nevertheless needed for making better

informed conservation decisions. Efforts to correlate

breeding and wintering populations of migratory birds

frequently employ extrinsic markers such as individual

leg bands and tracking devices. However, return rates

of banded migratory songbirds are typically very low

(Webster et al. 2002) and tracking devices, while having

improved substantially in recent years (Robinson et al.

2009; Bridge et al. 2011) are still expensive, are time con-

suming to employ, cannot be used effectively on small

birds (<15 g), and potentially affect behavior (Saraux

et al. 2011). Alternatively, intrinsic markers do not

require recapture of individuals and thus can be a time-

and cost-effective alternative to extrinsic markers when

employed on a broad scale. Intrinsic markers involve

sampling biological material that can be used to assign

an individual of unknown origin to a population (i.e.

assignment methods). Previous intrinsic methods have

focused on the use of genetic markers (DNA from

blood, muscle or feathers) or stable-isotope ratios (from

feathers, blood, muscle or claws) (Hobson & Wassenaar

2008). Thus far, however, the spatial scale of population

assignments from these intrinsic markers has been too

coarse to be informative for making informed conserva-

tion decisions (Clegg et al. 2003; Irwin et al. 2011).

Genetic assignment methods generally contrast the

observed genotype of an individual of unknown origin

to the allele frequencies in potential source populations.

Most methods only allow for the assignment of individ-

uals to one of a small number of source populations

(Rannala & Mountain 1997; Paetkau et al. 2004; Piry

et al. 2004). However, more recent spatially continuous

assignment models (SCAT; Wasser et al. 2004) allow

assignments to locations over a broad geographic area,

despite limited sampling. Isotope-based methods mirror

the approaches for genetic data; most applications com-

pare an observed isotope value for an animal to a set of

known isotope distributions from a small set of poten-

tial source locations (Wunder et al. 2005; reviewed in

Wunder & Norris 2008). In contrast with genetic assign-

ment methods, spatially continuous isotopic methods

usually overcome sparse geographic sampling by com-

paring stable-isotope ratios in tissue samples to mod-

eled background abundances for potential source

locations or populations (Hobson & Wassenaar 2008;

Hobson et al. 2012). Studies have rarely been based

models directly on samples of animal tissue (Wassenaar

& Hobson 1998). Studies of bird migration often use

d2H (the ratio of 2H to 1H isotopes) observed in feath-

ers, as feathers can be sampled non-invasively and geo-

graphic variation in d2H (the d2H isoscape) is known to

vary latitudinally in North America, making it particu-

larly useful for characterizing the breeding range of

Neotropical migrants (Kelly et al. 2002; Smith et al. 2005;

Hobson & Wassenaar 2008).

Many authors have advocated integrating isotopic

and genetic approaches (Clegg et al. 2003; Hobson 2005;

Kelly et al. 2005; Smith et al. 2005; G�omez-D�ıaz &

Gonz�alez-Solis 2007; Chabot et al. 2012; Guillot et al.

2012), but doing so requires the development of new,

statistically rigorous methods. Here we describe a novel

population assignment method that combines genetic

and isotopic assignment models under a common uni-

fied Bayesian framework, providing greater spatial reso-

lution than would be possible from either model alone.

For the genetic assignment method, our efforts build on

the SCAT method of Wasser et al. (2004) and provide

an alternative implementation of the spatial assignment

model with improvements in model fitting efficiency

and characterization of model uncertainty. For the isoto-

pic assignment method, we have adopted the methods

developed by Wunder (2007, 2010) where an isoscape

describing d2H variation across space, constructed using

precipitation and other environmental data, is mapped

to observed tissue isotope ratios. We demonstrate the

utility of our methodology using genetic and isotopic

data sets for hermit thrush (Catharus guttatus) and

Wilson’s warbler (Wilsonia pusilla). Our approach shares

a Bayesian perspective with that of Chabot et al. (2012)

but differs in implementation. Our model is available as

an R package (isoscatR) that will enable other research-

ers to adopt this method for similar assignment tasks.

Methods

Data

The data used are a sub-sample of the overall blood

and feather samples collected as part of the UCLA Cen-

ter for Tropical Research (CTR) ongoing project on the

population structure and conservation of Neotropical

migratory birds. Blood and feathers samples were col-

lected by CTR personnel in North America and Mexico

over many years of sampling (Clegg et al. 2003; Smith
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et al. 2005; Alvarado 2011). In addition samples were

collected at Monitoring Avian Productivity and Survi-

vorship (MAPS) bird banding stations between the end

of May and August (for all breeding samples), and at

Monitoreo de Sobrevivencia Invernal (MoSI) bird band-

ing stations between late November and early March

for wintering samples (Saracco et al. 2008; Saracco &

DeSante 2009).

From these samples, 138 hermit thrush individuals

collected between 2000 and 2008 from 14 breeding loca-

tions (Fig. 1) were sequenced at six microsatellite loci

with a subset of 111 individuals also having measured

d2H. For Wilson’s warbler, 163 individuals collected

between 1996 and 1998 from eight breeding locations

(Fig. 1) were sequenced at nine microsatellite loci, only

75 of these individuals, from five of the sampling loca-

tions, also had measured d2H. An additional 128 over-

wintering Wilson’s warblers collected in 1999 from

eight locations in Central America were sampled and

analyzed. These data included microsatellite data for

four of the nine microsatellite loci from the breeding

locations as well as measured d2H. More specific details

of sampling, collection and microsatellite screening pro-

tocols are included in Clegg et al. (2003) and Alvarado

(2011) for hermit thrush and Wilson’s warbler respec-

tively. In short, all six hermit thrush microsatellite loci

(Cul02, Cul04, Cul10, Cul28, Cul32, WpD30) are

based on loci developed in Gibbs et al. (1999) from the

Swainsons thrush (Catharus ustulatus). Of the nine mi-

crosatellite loci developed for the Wilson’s warbler, five

loci (WpC6, WpC25, WpD23, WpD30, WpD4) were

developed from commercially available Wilson’s war-

bler microsatellite-enriched libraries (Genetic Identifica-

tion Services, CA) and four loci (Dpl01, Dpl03, Dpl05,
Dpl16) were developed in Dawson et al. (1997) from a

Yellow warbler (Dendroica petechia) library.

Feather samples used for isotopic assignment were

prepared following the methods of Clegg et al. (2003).

Feathers were collected from individuals on the breed-

ing grounds between mid-May and mid-July to ensure

that they were locally breeding birds rather than

passage migrants. Feathers collected from individuals

on the wintering grounds should reflect the isotope sig-

natures from feathers grown on their respective breed-

ing grounds. Both hermit thrushes and Wilson’s

warblers undergo a prebasic molt on the summer

grounds in which all feathers including rectrices are

replaced, neither species replaces rectrices on molt-

migration locations or on the winter grounds (Pyle

1997; Rohwer et al. 2005; Pyle et al. 2009). Thus, rectrices

sampled any time during the year, including on the

winter grounds, will reflect isotopic signals from the

breeding grounds.

We express the ratio of stable hydrogen isotopes

using standard delta notation (d2H) which reflects the

ratio of heavy and light isotopes in a sample as the

parts per thousand (%) deviation from standard mean

ocean water (vSMOW = 0%). These values are calcu-

lated as d2H ¼ ðRsample=Rstandard � 1Þ � 1000, where

R ¼ 2H=1H. Larger values of d2H correspond with an

increase in heavier isotope abundance.

Genetic assignment methods

Our genetic assignment model is based on the Gaussian

process (GP) model introduced in the Smoothed and

Continuous Assignment Test (SCAT) method presented

in Wasser et al. (2004). Our implementation takes a two-

step approach: first we formulate a Gaussian process

model for allele frequency and use MCMC to sample

from the posterior distribution of these allele frequen-

cies at unobserved locations conditional on the allele

counts at observed locations. Second, the posterior

probability of an unknown sample conditional on its

genotype is computed across a fine-scale grid using the

allele frequencies sampled in the first step. In total, this

produces the posterior probability surface of a samples'
origin given its genotype and the information in the ref-

erence samples. Our approach differs from that of

Wasser et al. in that we: (i) Use a nugget effect in the

spatial covariance model to model unaccounted sources

of variation and have altered the parameterization
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Fig. 1. Map of North America showing

breeding area sampling locations for her-

mit thrush (blue) and Wilson’s warbler

(red).
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slightly to improve mixing; (ii) Do not fix the unknown

spatial covariance parameters after an initial MCMC

run, but let them vary across our MCMC; (iii) Compute

the posterior for the origin across a grid, rather than

drawing realizations from the posterior as in Wasser

et al., which enables us to combine the genetic and

isotope-based posteriors in a straightforward way.

Sampling allele frequencies from the posterior

For a location k and locus l, the allele count is assumed

to follow a multinomial distribution. As such, the prob-

ability of the observed allele counts, yl�k, at locus l in

location k given an allele frequency flik is

Pðyl�kjfl�kÞ ¼
slk !Q
i ylik !

Y
i

flik
ylik ð1Þ

where slk ¼ P
i ylik, the total number of alleles from locus

l found at location k. Allele frequencies flik are modeled

as a transformation of underlying, unobserved Hlik vari-

ables that are generated from a Gaussian Process:

flik ¼ expðHlikÞP
j expðHljkÞ

Hli �MVNðlli;RÞ ð2Þ

where lli is a r 9 1 mean column vector and Σ is a

r 9 r covariance matrix, where r is the number of sam-

pling locations.

The mean vector of the Gaussian process (lli) deter-

mines the mean allele frequency across all locations

and is parameterized as, lli ¼ nlgli1½r;1�. The parameter

ξ is not included in the Wasser et al. (2004) model and

has been added as this over-parameterization has been

shown to improve MCMC convergence in these

settings (Liu et al. 1998; Liu & Wu 1999; Van Dyk &

Meng 2001).

The covariance structure of the model Σ determines

how allele frequencies covary across geography. Ele-

ments of the covariance matrix are defined in terms of

a spatial covariance function, fRgj;k ¼ rðdj;kjaÞ where

dj;k is the distance between locations j and k. Similar to

Wasser et al. (2004) we assume the spatial process is

both stationary and isotropic, and follows a powered

exponential covariance function,

rðdjaÞ ¼ a0 exp �ðd=a1Þa2½ � þ a3Id¼0; ð3Þ
however our approach differs from Wasser et al. in the

inclusion of a nugget effect (a3). Adding a nugget

should aid in accounting for unmodeled additional

sources of variation (e.g. inadequacies of the GP model

to account for subtle structure within a sampling loca-

tion). The Mat�ern covariance function was also consid-

ered and tested, but did not produce significantly

different results (data not shown). The a parameters are

assumed to be shared across all alleles and loci.

Using this model, and genotypes from a set of refer-

ence genotypes Gref of known location, we sample pos-

terior allele frequencies (f) using a Markov Chain

Monte Carlo algorithm with priors on model parame-

ters that were chosen to be uninformative (see supple-

mental material for additional detail). The MCMC was

run using 300 000 total iterations, with the first 200 000

discarded as burn-in iterations. The remaining 100 000

iterations were further thinned, to reduce autocorrela-

tion, down to 1000 posterior samples (f ð1Þ; . . .; f ð1000Þ).
For each realization of f we sample allele frequencies

from the posterior predictive distribution of
~f
ðmÞjf ðmÞ; a; l for a regular grid of prediction locations

across North America. The posterior samples are then

used in our next stage to calculate posterior probabili-

ties for each test individual’s origin.

The grid of prediction locations for a given species is

defined by placing points every 1� of latitude and longi-

tude within a bounding box that expands the east–west

or north–south range of sampling locations by 20% in

each direction. Non-terrestrial locations are masked

using a simple polygon to approximate the North

American landmass with a slight buffer so that coastal

islands are included. The range and resolution of the

grid is visible in the posterior surfaces shown in Fig. 2.

As the number of prediction locations is large, 2943

for hermit thrush and 1691 for Wilson’s warbler respec-

tively, sampling each ~f
ðmÞ

is computationally intensive.

To improve performance, we extended our code to run

on a graphics processor unit (GPU) and by doing so

achieved approximately a 5x speedup. Additional tech-

nical details on our implementation are included in the

supplementary materials.

Computing the posterior on individual origins

We assume Hardy-Weinberg equilibrium and linkage

equilibrium such that given the allele frequency sur-

faces (~f ), the likelihood describing the probability of the

genetic sample data SG coming from location k with

alleles il and jl at locus l, is computed by:

PðSGj~f ; kÞ ¼
Y
l

Pðil; jlj~f ; kÞ ð4Þ

Pðil; jlj~f ; kÞ ¼ cPðilj~f ; kÞ þ ð1� cÞPðilj~f ; kÞ2 if i ¼ j

ð1� cÞPðilj~f ; kÞPðjlj~f ; kÞ if i 6¼ j

�

ð5Þ
Pðikj~f ; kÞ ¼ ð1� dÞ~flik þ d=ml ð6Þ

where d is the genotyping error probability, c is

probability of amplifying only one allele, and ml is the

number of alleles at locus l. Missing alleles are handled

by setting Pðilj~f ; kÞ ¼ 1. For our analyses we fixed

© 2013 John Wiley & Sons Ltd
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d = 0.05 and c = 0.01 based on Wasser et al. (2004), and

we found that in practice reasonable changes to these

values have little impact on the results.

To compute the likelihood of an assignment location

k, we can integrate over the unobserved allele frequency

surfaces (~f ) using the following Monte Carlo approxi-

mation:

PðSGjk;Gref Þ �
1

M

XM
m¼1

PðSGjk; ~f
ðmÞÞ ð7Þ

In this approximation, the ~f
ð�Þ

need to be realiza-

tions from the posterior predictive distribution of ~f

given the reference genotypes. We use posterior real-

izations from our first stage (~f
ðiÞ
, i = 1,…,1000, i.e.

M = 1000). Also, we opted to use the median rather

than the mean prescribed by equation 7, as we found

the distribution PðSGj~f
ðmÞ

; kÞ to be highly right skewed

making the mean estimate unstable. As further

validation, we found the median to display superior

assignment performance to mean, as assessed by

AUC.

To derive the posterior assignment probability surface

for a given genetic sample (PðkjSG;Gref Þ) using Eq. 7

we multiply by a spatial prior (p(k)) and normalize over

the grid of prediction locations to obtain a proper

probability,

(A)

(B)

(C)

(D)

Fig. 2. Posterior assignment probability maps, from left to right, of the genetic, isotopic and combined assignment model output.

Rows A and B reflect the results for the same hermit thrush test sample, and C and D of the same Wilson’s warbler test sample.

These pairs reflect the result of cross-validation by individual and cross-validation by location respectively. These cross-validation

schemes involve the exclusion of an individual or a sampling location before fitting the model to the remainder of the data. The fit-

ted model is then used to predict the origin of the excluded individuals. The indicates the true origin of the sample and ● indicate

all other sampling locations.
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PðkjSG;Gref Þ ¼
PðSGjk;Gref ÞpðkÞP
k0 PðSGjk0;Gref Þpðk0Þ

: ð8Þ

Here, k0 represents the set of all prediction locations for
~f as described above. For all analyses present in this paper

a flat prior covering North America was used for p(k).

Isotope assignment

Natural abundances of stable isotopes vary systemati-

cally across environmental and biological gradients. The

isotopic assignment method we employ is based on the

work of Wunder (2007, 2010) which constructs assign-

ment models for the probability of observing a particu-

lar isotope value in animal tissues for a location, given

a set of known-origin stable-isotope values. Known-

origin isotope values can be based in animal tissues

(e.g. feathers sampled from across a range), or from

environmental samples (e.g. d2H in rain water collected

from across a range). The assignment model we use

here is based on a linear calibration that relates

expected d2H values for precipitation (cf. Bowen et al.

2005) to d2H values in bird feathers that were of known

geographic origin. We have used this precipitation-

based model as the sampling of bird feathers with

measured d2H is not as geographically extensive as

precipitation d2H data collected by the Global Network

of Isotopes in Precipitation (GNIP; IAEA, WMO, 2006).

Since precipitation d2H is measured at discrete loca-

tions that do not coincide with the feather sampling

locations, it is necessary to build a spatial model of the

precipitation d2H (an ‘isoscape’). This is done by fitting

a Bayesian spatial linear model using a Mat�ern covari-

ance to aggregated Global Network of Isotopes in Pre-

cipitation (GNIP) data (Iref ) (IAEA, WMO, 2006). GNIP

data was aggregated by calculating the average

observed d2H and other covariates during the breeding

season (May through July) for each sampling station

over its entire period of operation. Model predictors

included altitude and precipitation as linear terms and

max temperature, min temperature, average tempera-

ture, latitude, and longitude as quadratic terms based

on similar isoscape models used by Bowen et al. (2012).

The model was fit using the spBayes package (Finley

et al. 2012) in R (R Core Team 2012) over 15 000 MCMC

iterations. After discarding the first 5000 as burnin the

remaining 10 000 iterations were thinned to 1000 pos-

terior samples. Posterior predictive samples of the pre-

cipitation isoscape (~p
ð�Þ
k ) were made using average

environmental covariates for the breeding seasons

between 2000 and 2009 across North America using cli-

mate data from CRU TS 3.10 (Harris et al. 2012) and ele-

vation data from the ETOPO1 Global Relief Model

(Amante & Eakins 2009), predictions were made for a

grid of 1� � 1� latitude longitude cells across North

America constructed to be equivalent to the prediction

locations of the genetic assignment model.

To account for the fractionation that occurs as the

environmental isotopes are integrated into the feather

and that the isoscape is a model based on temporally

averaged environmental observations, we model the

isotope ratio for a feather sampled at location k as a lin-

ear function of the precipitation isotope ratio:

SIjk; ~p;x; q; s2 �Nðxþ q~pk; s
2Þ ð9Þ

where SI is the observed isotope ratio of a feather, ~pk is

isotope ratio based on the precipitation isoscape at loca-

tion k, and x, q, and s2 are parameters describing the

calibration between precipitation and feather isotope

ratios. We estimate x, q, and s2 using standard least

squares regression for each posterior predictive sample

of ~p
ð�Þ
k from the MCMC described above (and include a

superscript to indicate posterior sample iteration in our

notation below). Examples of the fitted calibration func-

tion for both species are included in Figure S2 in the

supplementary materials. Next, as with the genetic data,

we compute the likelihood PðSIjkÞ by Monte Carlo

approximation using posterior samples:

PðSIjk; Iref Þ �
1

M

XM
m¼1

PðSIjk; ~pðmÞ
;xðmÞ; qðmÞ; s2

ðmÞÞ ð10Þ

As with the genetic assignment model, we use a med-

ian in place of the mean implied by Equation 10 and

we derive a posterior assignment probability surface

across the prediction grid using the approach presented

in Eq. 8 for the genetic assignment method.

Combined assignment

Bayesian methodologies provide a simple framework

for combining the two assignment methods. For a given

feather sample S, there are observed genetic and isoto-

pic values SG and SI for each test individual, and

genetic and isotopic reference data (Gref ; Iref ). We

assume these sample values are independent condi-

tional on the location. Consequently, we can write

down the probability of observing a sample S ¼ ðSG; SIÞ
for any location k using Bayes rule:

PðkjS;Gref ; Iref Þ / PðSjk;Gref ; Iref ÞpðkÞ ð11Þ
/ PðSGjk;Gref ÞPðSIjk; Iref ÞpðkÞ ð12Þ

Where PðSGjk;Gref Þ and PðSIjk; Iref Þ are given by Eqs. 4

and 9 respectively. As with Eq. 8, proper probabilities

are achieved by normalization by dividing each loca-

tion’s probability by the sum of probabilities for all pre-

diction locations.

One problem with a straightforward combination, as

just described, is that if the genetic or isotopic models

© 2013 John Wiley & Sons Ltd
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over- or under-represent the certainty in the marginal

assignment the inference may inappropriately rely on

one source of data over the other. In order to ameliorate

this problem, we have undertaken what we term cross-

validation calibrated combined (CVCC) model tuning,

whereby we attempt to optimize the combined models’

performance by independently flattening or sharpening

the genetic and isotopic models before constructing the

final combined model. This optimization is accom-

plished by raising PðSGjk;Gref Þ and PðSIjk; Iref Þ, from

Eq. 12, to the power a and b respectively before calcu-

lating the combined assignment probability. Powers >1
result in a sharpening and powers <1 result in a flatten-

ing. In order to choose the optimal values of a and b

used we perform a simple grid search of values for a

and b from 10�1 to 10 and assess the performance by

cross-validation using the AUC metric described below.

Assignment performance metrics

As our ultimate goal is to identify probable breeding

locations for birds given their genetic and isotopic char-

acteristics, we assess our models’ ability to correctly

assign samples with known origins. We have opted for

two separate but complementary approaches for assess-

ment: a distance-based approach and a receiver operat-

ing characteristic (ROC) curve based approach.

Our distance-based assessment calculates the great

circle distance between the known origin of a sample

and the origin location with the maximum a posteriori

(MAP) probability. This is useful for characterizing the

performance of the MAP estimates in an interpretable

way but is somewhat limited as it lacks the ability to

distinguish between sharply peaked and flat posterior

assignment maps.

In order to address this limitation we have also con-

sidered the assignments as a binary classification prob-

lem (classifying locations as true origins or non-origins)

and assess the classification power of our model using

ROC curves (see supplementary materials for additional

background and implementation details) (Hilden 1991;

Krzanowski & Hand 2009). We also compute the area

under the ROC curve (AUC), which is an estimate of

the probability that a randomly selected true origin

location will have an assignment probability that is

greater than the assignment probability of a randomly

selected non-origin location. This statistic is particular

useful as it can be used to compare the assignment

accuracy and precision of different models.

Cross-validation procedures

To evaluate the accuracy of our assignment method, we

follow Wasser et al. (2004) and have employed two

modes of cross-validation, cross-validation by individ-

ual and cross-validation by location. For the individual

cross-validation, a single individual is excluded from

the data and both genetic and isotopic models are fit

and used to predict the spatial origin of the excluded

individual. Location based cross-validation is similar

except that all individuals from a sampling location are

excluded before fitting the models. The accuracy of the

assignment models are assessed by ROC and AUC.

It is important to consider both approaches, as meth-

ods that are only evaluated at locations where other

individuals have been sampled (cf. Chabot et al. 2012)

tend to produce overly optimistic results. It is exceed-

ingly unlikely that an unknown sample will exactly

coincide with one of the small number of sampling

locations. As such, under our scheme cross-validation

by individual reflects an ideal scenario with the true

origin of the test individual being one of the sampling

locations. Conversely, cross-validation by location rep-

resents a scenario where the inference will perform well

only insofar as the test individual’s true location is near

other sampling locations. Results for both approaches

are presented in Fig. 3 and Table 1.

To further explore decreased performance under

cross-validation by location we have also explored

whether the loss of predictive accuracy in the models

under cross-validation by location occurs because:

(i) the model is sensitive to the loss of sample size

(removing a location can remove upwards of 20% of

samples from the dataset), or (ii) the model is sensitive

to the loss of unique spatial information at that

sampling location. These alternatives are not mutually

exclusive and we explored this effect by performing

what we term size-adjusted individual cross-validation,

where the location label for each individual is random-

ized before performing cross-validation by location.

This approach is equivalent to cross-validation by loca-

tion in terms of the decrease in sample size but does

not remove all individuals from a sampling location.

Results

Our results clearly indicate that for both species and all

cross-validation regimes the combined assignment

model outperforms the genetic or isotopic assignment

models alone. In reviewing the assignment maps (repre-

sentative examples presented in Fig. 2, with additional

examples in Figs. S3–6) the common pattern appears to

be that the genetic model tends to make very compact

and specific predictions (strongly peaked posteriors),

while the isotopic model makes less specific predictions

(wide and flat posteriors). In practice, the higher speci-

ficity of the genetic model tends to sharpen the joint

posterior when both models agree on the origin of the
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individual (Fig. 2C,D), whereas the isotopic model

tends to flatten the posterior when the two models dis-

agree (Fig. 2B).

The cross-validation results show that the genetic

model by itself performs better than the isotopic model

under cross-validation by individual, and approxi-

mately the same or worse than the isotopic model

alone under cross-validation by location. Between the

two species and two cross-validation schemes it is

clear that the performance of the genetic model is

more sensitive to the spatial structure of the sampling

design than the isotope model. This pattern is consis-

tent with the more limited genetic reference data. As

the genetic model infers allele frequencies based on

neighboring sampling locations the removal of a single

sampling location removes useful information. This

becomes more pronounced for sampling locations that

are more spatially isolated. Conversely, the isotopic

model fits a global environmental process model via a

calibration curve, which, as a linear least squares

model, is far more robust to the removal of a single

sampling location.

To investigate this in more detail, we stratify assign-

ment accuracy by sampling location (Tables S1 and S2,

Supporting information) and find that losses in accu-

racy under cross-validation by location are most

extreme for sampling locations that are the most iso-

lated. For example, the hermit thrush sampling loca-

tions MI, CT, and MB performed relatively well under

cross-validation by individual but show a large loss in

prediction accuracy under cross-validation by location,

whereas sampling locations AZ2 and UT, which have

several close neighbors, show a relatively smaller loss

in prediction accuracy. Similarly, the same pattern is

observed with Wilson’s warbler as sampling locations

Co and Ont both show large losses in accuracy while

Al, Or, and SF suffer relatively smaller losses. This

seems to strongly indicate that coverage in sampling

locations plays a major role in the overall performance

of the genetic and, hence, the combined model.

This is further supported by our results from the size

adjusted individual cross-validation approach. Our

results (Fig. 3, Fig. S1C, F, Supporting information)

show that this cross-validation method has accuracy

that is almost identical to cross-validation by individual

and not location. As such, the loss in predictive accu-

racy for location-based cross validation is driven almost

entirely by the loss of information present at a spatial

location and not the loss of sample size. This finding

emphasizes the importance of sampling coverage rela-

tive to sampling depth for performance.

Performance of combined assignment

Results of the cross-validation calibrated combined

model (CVCC) grid search are shown in Fig. 4 which

displays a raster of the resulting AUCs with the optimal
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Fig. 3. Empirical cumulative density functions of error dis-

tances for the maximum a posteriori estimate of location. We

show results for Hermit Thrush (A–B) and Wilson’s Warbler

(C–D) based on individual (A and B) and location (C and D)

based cross-validation. The grey line represents the error

expected from random assignment within the approximate

breeding range of each species. As shown, the combined

genetic and isotopic method has lower median error distance

than either method alone. The CVCC method (a variation on

the combined method) provides a small improvement over the

simple combination method. Identically colored lines reflect

the result of independent MCMC chains. The overlap of these

lines suggests the chains have converged.

Table 1. Shown are the average of independent MCMC chains

of the area under the ROC curves (AUCs) for each species and

cross-validation method. These AUCs are the probability of

randomly selected true origin location having a assignment

probability that is larger than a randomly selected non-origin

location. Using these metrics, a perfect classifier will have an

AUC of 1 while random assignment will have an AUC of 0.5

Model

CV AUC

Ind Loc SA Ind

Hermit Thrush Genetic 0.843 0.714 0.836

Isotopic 0.722 0.696 0.722

Combined 0.890 0.782 0.884

CVCC 0.884 0.794 0.879

Wilson’s Warbler Genetic 0.912 0.659 0.909

Isotopic 0.826 0.819 0.825

Combined 0.959 0.830 0.960

CVCC 0.962 0.862 0.963
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model indicated by the white dot (the empirical CDFs

and ROC curve for the optimal CVCC are included in

Fig. 3 and Fig. S1 respectively).

As shown in Fig. 3, the CVCC approach shows minor

improvements over the naive combination (a = b = 1).

In the case of cross-validation by individual, CVCC

exhibits no meaningful improvement, based on the

AUC criterion. The very small improvement in the

Wilson’s warbler model appears to occur due to a gen-

eral sharpening of the combined model and slightly

smaller sharpening of the isotopic model (log10a ¼ 0:5,

log10b ¼ 0:7). This pattern is suggestive of a small

amount of under-fitting by both models. Additionally,

the rasters reemphasize the relative advantages of the

genetic model over the isotopic model under cross-

validation by individual, as sharpening the isotopic

model while flattening the genetic model (i.e. the region

below the 1:1 line in Fig. 4A, C) results in rapidly

declining AUC, whereas AUC is relatively constant

when the model tuning is the other way around.

The results for cross-validation by location are more

interesting, as the CVCC tuning exhibits small but more

meaningful improvements in model performance. In the

case of the hermit thrush, we see a general flattening of

the combined model with slightly more flattening of the

genetic model (log10a ¼ �1, log10b ¼ �0:9), indicating

potential overfitting. From the way that the calibration

alters the shape of the ROC curve, it is evident that model

improvement occurs by trading a small amount of preci-

sion from locations at which the model was performing

very well in order to significantly improve at more mid-

dling locations where the false positive rate between is

between 0.15 and 0.45. We observe a different pattern

with the Wilson’s Warber, as the calibration appears to

almost exclusively favor sharpening (log10a ¼ 0:1;

log10b ¼ 0:6). Given the poor performance of the genetic

model under cross-validation by location for this species,

we might expect the calibration to flatten the genetic

model contribution as much as possible. However, these

results seem to indicate that there is still useful informa-

tion that is unique to the genetic model. Overall, the

different qualitative outcomes in model tuning from

the hermit thrush and Wilson’s warbler make clear that

the appropriate weighting of isotopes and genetics will be

dataset dependent.

Application: assignment of breeding locations for
Wilson’s warblers wintering in Central America

The ultimate goal of these methods is to use the fitted

models from birds on their breeding range to predict

the geographic origin of individuals encountered else-

where during a different phase in their life-cycle. Using

preliminary data available for Wilson’s warblers on

their wintering grounds (126 individuals from eight

locations in Central America), we predict breeding loca-

tions. For these wintering samples only a subset, four of
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Fig. 4. Heat maps of the area under the ROC curves (AUCs)

resulting from different parameter choices in the cross-valida-

tion calibrated combined (CVCC) model for hermit thrush (A

and B) and Wilson’s warbler (C and D) under cross-validation

by individual and cross-validation by location respectively.

The plots show the result of empirically tuning the combined

model by sharpening or flatten the genetic and isotopic mod-

els. This is achieved by raising the models to the power a and

b respectively, with values above 1 resulting in a sharpening of

the model and values below 1 flatten the model. To choose

parameter values we conduct a grid search of values between

-10 and 10. Here ∘ indicates the value of a and b resulting in

maximal AUC and that are used for the results in Fig. 3.

© 2013 John Wiley & Sons Ltd

JOINT INFERENCE WITH GENETIC AND STABLE- ISOTOPE DATA 4171



nine, microsatellite loci present in the breeding data

were available. While this data are sufficient to generate

spatial predictions, the results are necessarily more

uncertain than predictions made for individuals with

all 9 loci available. Figure 5 presents the results combin-

ing these arcs for all individuals, where the color-

coding reflects the wintering sampling location, to

depict the patterns of migratory connectivity between

the wintering and breeding ranges. While the majority

of the individuals are localized to breeding locations in

western Canada, the Wilson’s warblers wintering on

the tip of Baja uniquely cluster to breeding locations

along the coast of California and Oregon, suggesting a

potential subpopulation with distinct migratory behav-

ior. Additionally, only two birds localize to breeding

grounds in the eastern half of North America, but data

are insufficient to determine if this a failure of the

assignment model or a true signal.

Discussion

We have presented a novel methodology for the assign-

ment of migratory birds to breeding populations that

combines genetic and isotopic methods, and by doing

so improves upon the resolution of either method

alone.

One explanation for why our combined approach is

more effective then either marker alone is because the

geographic patterns of variation for the two data

sources are relatively orthogonal. In North America,

there is a continent-wide latitudinal pattern in stable

hydrogen isotope ratios (d2H) resulting from patterns of

average precipitation during the growing season that

are transmitted through food webs (Hobson &

Wassenaar 2008). In contrast, genetic variation in the

two species we considered is typically distributed longi-

tudinally, with eastern and western populations more

genetically differentiated than populations to the north

and south (Clegg et al. 2003; Smith et al. 2005). The

east–west divide in many species that breed in North

America often reflects historical patterns of diversifica-

tion and gene flow. Thus, combining information from

both markers allows for greater resolution of popula-

tions because it leverages the orthogonal nature of the

variation in each of the two markers. Indeed, the

respective advantages of each marker have been known

for some time and have been used together to examine

patterns of connectivity (Clegg et al. 2003; Kelly et al.

2005; Boulet & Norris 2006). However, our approach

provides a rigorous statistical framework that combines

information from both types of markers into a single

analytical framework.

(A)

(C)

(B)

Fig. 5. Maps showing connectivity

between sampling locations of wintering

Wilson’s warblers and maximum a poste-

riori (MAP) estimates of breeding season

origin using genetic (A), isotopic (B) or

combined (C) models. Connections are

indicated using great circle arcs and are

colored according to wintering location.

Breeding and wintering range maps for

Wilson’s warbler are indicated in orange

and blue respectively (Ridgely et al.

2007). Each assigned location is a point

estimate with associated uncertainty, but

the collective distribution of assigned ori-

gins is revealing of migratory connectiv-

ity between regions of mainland Mexico

and locations in Western North America

and Baja and the coastal Pacific North-

west.
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Recently, a number of modeling frameworks for

using stable isotopes to assign origins of migratory

animals have been proposed, a review of the most com-

mon frameworks can be found in Wunder (2012). Each

of these frameworks seeks to improve assignment per-

formance by integrating additional information sources.

For example, Royle & Rubenstein (2004) used estimated

abundance, Wunder et al. (2005) used sample size, and

Kelly et al. (2005) used haplotype as priors for other-

wise isotope-based nominal assignment models. Like-

wise, Hobson et al. (2009) used geographically binned

band recovery data for constraining an otherwise

isotope-based continuous assignment model. van

Wilgenburg & Hobson (2011) use band recovery data to

infer direction of migration and this was used to further

refine an isotope-based continuous assignment model.

Our model differs from these examples in that it com-

bines a model based on genetics with a model based on

stable isotopes in a single theoretically cohesive model

framework. We have focused on how best to combine

these methods and demonstrate the improvement that

arises from combining these two sources of information.

Adding in yet additional information will only

improve the assignments further. Indeed, technological

advancements in molecular methods and tracking

devices are providing a wealth of alternative methods

for determining patterns of migratory connectivity, each

with its own set of advantages and limitations. One

advantage of the method described here is that it is

inherently flexible and can easily be extended to include

other sources of data. Thus, the overall efficacy of the

joint assignment method that we describe would be

expected to increase with addition of other data

sources; this might include additional genetic data [e.g.

genetic (Single Nucleotide Polymorphisms, mitochon-

drial haplotypes), biogeochemical (alternative isotopes

and trace elements), or morphometric data, provided

that each additional dataset can be formulated as a

principled probabilistic model (P(S|k,M), the probabil-

ity of some sample data S given a location k and model

M]. Furthermore, there is also the possibility of incorpo-

rating informative spatial priors such as species distribu-

tion models, and the possibility for integrating data from

extrinsic markers including band returns (cf. Hobson

et al. 2009) and tracking devices (e.g. geolocators, satellite

tracking, etc.), all of which would be expected to further

improve assignment reliability. However, a limitation

with the intrinsic methods that we describe is that

patterns of connectivity are not revealed unless samples

are collected from across the species range and from

across the full isotopic gradient, including both wintering

and breeding areas. As a result, unraveling patterns of

migratory connectivity will depend upon large research

networks dedicated to sample collection, data generation

and analysis (Saracco et al. 2008; Saracco & DeSante

2009).

Our assignments of wintering Wilson’s warblers to

breeding populations demonstrate the potential utility

of using intrinsic markers to identify patterns of migra-

tory connectivity on a broad scale. The genetic data

used to assign wintering individuals to breeding popu-

lations was comparatively incomplete: the data set was

restricted to four of the nine microsatellite loci used to

train and cross-validate our model. Nonetheless, some

broad scale patterns of connectivity emerged. Most

notably, we detect an apparent strong pattern of con-

nectivity between Wilson’s warblers breeding along the

Pacific coast and wintering in southern Baja. If this pat-

tern of connectivity holds up to further sampling, then

the population dynamics of Wilson warblers breeding

in the Pacific Coast region of California through south-

ern British Columbia may be significantly affected by

habitat alteration on the Baja Peninsula. It will be worth

assessing further if this structured connectivity has rela-

tionships to the distribution of Wilson’s warbler subspe-

cies (e.g. the chryseola subspecies, Ammon & Gilbert

1999). Further, only two birds were assigned to breed-

ing areas in the eastern half of North America. Previous

work by Kimura et al. (2002) indicated that Wilson’s

warblers breeding in the eastern part of their breeding

range wintered near Guatemala and southern Mexico,

locations for which genetic and isotopic data are not

currently available. Increased sampling across both

breeding and wintering areas will likely improve

robustness of our model as well as our ability to detect

patterns of migratory connectivity.

There is a wide utility for the approach described

here. From a conservation standpoint, many popula-

tions of migratory birds are declining (Faaborg et al.

2010) and developing appropriate management and

conservation approaches requires knowledge of full life

cycle biology. In many cases it is not known whether

population declines result from issues on the breeding

grounds, on the wintering grounds, or along migration

corridors. Linking populations along each part of the

annual cycle is often necessary for revealing the causes

of declines. Another important reason for understand-

ing connectivity is to understand patterns of disease

transmission. Many diseases important for human

health are transported by migrating wild birds and

understanding movement patterns of birds is essential

to understanding possible outbreak patterns (Fuller

et al. 2012). Finally, there is much that can be learned

about the ecology and evolution of birds from a more

through understanding of migratory connectivity. For

example, efforts to understand population expansions

over past glacial periods may be revealed by analyzing

migratory pathways, and could offer new insights into
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the mechanisms of speciation (Ruegg & Smith 2002;

Mil�a et al. 2007).

In sum, we present a new method that combines

genetic and isotopic assignment under a common uni-

fied framework that describes where migratory birds

winter and breed at a finer spatial resolution than was

previously possible. This methodology and supporting

tools show considerable potential for describing pat-

terns of connectivity and should assist in studies inves-

tigating population declines in migratory birds, the

spatial and temporal transmission dynamics of avian-

born diseases and many basic questions regarding ecol-

ogy and the evolution of migration.
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Table S1 Hermit thrush – Table shows percentiles of the distri-

bution of great circle distances (in km) between the center of

the grid cell of known origin to the center of the grid cell with

maximum median posterior probability for all samples at the

given location.

Table S2 Wilson’s warbler – Table shows percentiles of the

distribution of great circle distances (in km) between the center

of the grid cell of known origin to the center of the grid cell

with maximum median posterior probability for all samples at

the given location.

Fig. S1 ROC curves for Hermit Thrush (A–C) and Wilson’s

Warbler (D–F) under individual (A and B) and location (B and

E) based cross-validation.

Fig. S2 Isotope model linear calibration function fits for hermit

thrush and Wilson’s warbler.

Fig. S3 Hermit thrush posterior assignment probability maps

of the genetic, isotopic and combined assignment model output

under cross-validation by location. Each row reflects the

assignment probability surfaces for a different individual, with

the first three reflecting the best and last three reflecting the

worst assignment outcomes as assessed by distance from true

origin to the location of maximum posterior assignment prob-

ability.

Fig. S4 Hermit thrush posterior assignment probability maps

of the genetic, isotopic and combined assignment model output

under cross-validation by location. Each row reflects the

assignment probability surfaces for a different randomly

selected individual.

Fig. S5 Wilson’s warbler posterior assignment probability

maps of the genetic, isotopic and combined assignment model

output under cross-validation by location. Each row reflects

the assignment probability surfaces for a different individual,

with the first three reflecting the best and last three reflecting

the worst assignment outcomes as assessed by distance from

true origin to the location of maximum posterior assignment

probability.

Fig. S6 Wilson’s warbler posterior assignment probability

maps of the genetic, isotopic and combined assignment model

output under cross-validation by location. Each row reflects

the assignment probability surfaces for a different randomly

selected individual.
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