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INTRODUCTION

Birds exhibit a wide diversity of seasonal migration pat-
terns (Newton, 2008). Some birds undertake extraor-
dinary journeys across continents while others only 
migrate short distances and many others do not migrate 
at all (Newton, 2008). Using novel technologies, sub-
stantial research has been conducted to document dif-
ferences in migratory behaviour and map geographic 
patterns of how individuals redistribute between the sea-
sonal grounds of migratory species (Faaborg et al., 2010; 
Finch et al., 2017; Ruegg et al., 2014; Ruegg & Smith, 
2002; Webster et al., 2002). Migratory connectivity, the 

spatiotemporal linkages of individuals and populations 
between seasons stemming from migratory movements 
(Webster et al., 2002), has important consequences for 
the biology of migratory animals, as it can affect short- 
term population dynamics and long- term evolutionary 
responses (Taylor & Norris, 2010; Webster & Marra, 
2005). It is also a critical aspect to consider for develop-
ing sound conservation strategies to stem the rapid de-
cline of the migratory avifauna (Rosenberg et al., 2019; 
Webster & Marra, 2005).

Previous research on avian migratory connectivity has 
almost exclusively focused on describing the geographic 
patterns of connections between breeding and wintering 
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Abstract

Birds exhibit a remarkable array of seasonal migrations. Despite much research 

describing migratory behaviour, the underlying forces driving how a species’ 

breeding and wintering populations redistribute each year, that is, migratory con-

nectivity, remain largely unknown. Here, we test the hypothesis that birds migrate 

in a way that minimises energy expenditure while considering intraspecific compe-

tition for energy acquisition, by developing a modelling framework that simulates 

an optimal redistribution of individuals between breeding and wintering areas. 

Using 25 species across the Americas, we find that the model accurately predicts 

empirical migration patterns, and thus offers a general explanation for migratory 

connectivity based on first ecological and energetic principles. Our model provides 

a strong basis for exploring additional processes underlying the ecology and evolu-

tion of migration, but also a framework for predicting how migration impacts local 

adaptation across seasons and how environmental change may affect population 

dynamics in migratory species.
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populations (e.g. Knight et al., 2018; Kramer et al., 2018; 
Ruegg et al., 2014; Trierweiler et al., 2014) and/or explor-
ing the consequences of migratory connectivity, partic-
ularly for population dynamics (Dolman & Sutherland, 
1994; Taylor & Norris, 2010; Taylor & Stutchbury, 2016). 
The few studies that investigated the causes of migra-
tory connectivity found that drivers include minimising 
energetic costs of migration given environmental con-
ditions en route (Norevik et al., 2020), cultural transmis-
sion of migratory behaviour (Harrison et al., 2010), land 
availability (Finch et al., 2017) and natal dispersal and 
density- dependent population regulations (Taylor, 2019). 
However, these studies were largely species specific or 
only used theoretical simulations. Therefore, despite the 
increasingly large amount of migration data available 
and the ecological significance of seasonal migration, we 
still lack a general, unified understanding of the ecolog-
ical and evolutionary processes underlying avian migra-
tory connectivity. With population declines expected to 
accelerate under global change (Zurell et al., 2018), there 
is an urgent need to develop a framework to understand 
not just where birds migrate but also the fundamental 
forces driving these patterns.

Density dependence, particularly related to intraspe-
cific competition for resource consumption, has been 
shown to shape connectivity patterns in simulated mi-
gration networks (Taylor, 2019). In particular, costs as-
sociated with mutual interference (Goss- Custard, 1980; 
Somveille et al., 2018), increasing search time (Pawar 
et al., 2012) and territorial defence (Greenberg et al., 
2010), are likely to negatively affect the density depen-
dence of energy intake in migratory birds. The ideal 
free distribution (IFD) is a standard ecological model 
of competitive equilibrium, which predicts the density- 
dependent distribution of individuals within a species 
that maximises energy intake given the spatial distribu-
tion of resources (Fretwell & Lucas, 1970). Therefore, the 
IFD can in principle be used to better understand how 
migratory species distribute in seasonal environments 
and explain migratory connectivity. However, for mi-
gratory species, in addition to the process of competitive 
interactions for maximising energy intake, the cost of 
relocating between seasonal grounds must be taken into 
account as it has been shown to have a strong influence 
on migratory behaviour (Alerstam, 2011; Amélineau 
et al., 2018; Flack et al., 2016; Norevik et al., 2020). We 
call energy efficiency the mechanism of optimising both 
energy expenditure and energy acquisition from the en-
vironment together. We propose that individuals within 
migratory species migrate in the most energy efficient 
way and follow an ideal optimal redistribution, which 
shapes patterns of species- level migratory connectivity. 
Similar to the IFD, this proposed hypothesis assumes 
that individuals have complete knowledge of resource 
quality in the environment (i.e. they are ideal) and com-
pete for access to energy supply, but also that, in addi-
tion to intraspecific competition, energetic costs are 

minimised when individuals relocate between breeding 
and wintering grounds.

The aim of this study is to investigate whether pat-
terns of seasonal redistribution of individuals within mi-
gratory species are driven by energy efficiency. To do so, 
we developed a modelling framework that simulates the 
optimal redistribution of ideal individuals within a mi-
gratory species. For each species investigated, the model 
uses linear optimisation to simulate optimal migratory 
connectivity between the species’ seasonal distributions 
(see Material and Methods; Figure 1). We used spatio-
temporal exploratory models based on observation data 
from the eBird citizen- science program (Fink et al., 
2020b) to calibrate the distribution of energy supply 
across species’ seasonal ranges, and model predictions 
were validated using migratory movement data for 7145 
individuals belonging to 25 species of North American 
migratory birds, pooling together data from electronic 
tracking devices, banding recoveries and high- resolution 
genetic markers to map migratory connectivity.

M ATERI A L A N D M ETHODS

Model description

We developed a modelling framework to simulate spe-
cies’ migratory connectivity that follows an ideal opti-
mal redistribution of individuals between the breeding 
and wintering grounds. This model –  called the Optimal 
Redistribution Simulator (ORSIM) –  is based on en-
ergy optimisation. It is structured as a bipartite network 
with nodes representing seasonally occupied sites of two 
types: departing sites, from which individuals start their 
migration, and destination sites, where individuals end 
their migration. Each node, of either type, has a seasonal 
energy supply, and each pair of departing– destination 
nodes is connected by an edge representing the energetic 
cost of relocating between them (Figure 1). In addition 
to available energy supply at seasonal sites and energetic 
cost of seasonal relocation, individuals have a seasonal 
energy demand that corresponds to the energy that they 
need to survive the season spent at the destination sites. 
The model uses optimal transport theory to predict the 
flow of migrating individuals between sites seasonally 
occupied by a species, capturing two processes: minimis-
ing energetic costs associated with relocating between 
seasonal grounds, and intraspecific competition for ac-
cess to energy supply (Figure 1). In particular, we used 
a solution to the Monge– Kantorovich transportation 
problem (Hitchcock, 1941; Rachev, 1984), which, applied 
to a migratory species, can be formalised with linear 
programming as follows:

Let B =
{(

b1, kb1

)

,⋯,
(

bm, kbm

)}

 be the distribution of 
energy supply during the breeding season, with m breed-
ing sites, where bi is breeding site i and kbi is the weight 
of this site, which corresponds to the energy available 
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at this site; and W =
{(

w1, kw1

)

,⋯,
(

wn, kwn

)}

 be the dis-
tribution of energy supply during the wintering season, 
with n wintering sites, where wj is wintering site j and kwj 
is the weight of this site, which corresponds to the energy 
available at this site (Figure 1). We want to find a global 
flow of migrating individuals F =

[

fij
]

, with fij represent-
ing the flow of individuals between departing site bi and 
destination site wj, that minimises the overall cost:

where cij is the energetic cost associated with individuals 
relocating between sites bi and wj. This function is subject 
to the following constraints:

Constraint (1) allows individuals to move from B to 
W  and not vice versa (but the model would generate the 
same results if it was set up so that individuals would 
move from W to B). Constraint (2) limits the number 
of individuals departing the breeding sites in B so 
that the population- level energy demand (i.e. the sum 
of energy demand across all individuals in a popula-
tion) at a breeding site before migration is not higher 
than the seasonal energy supply at that breeding site. 
Constraint (3) limits the wintering sites in W  to receive 
no more individuals than can be accommodated given 
the energy supply in these sites. Finally, constraint (4) 
specifies that the combined energy demand of all the 
individuals in the system must be equal to either the 
total energy supply of breeding sites or the total energy 
supply of wintering sites, whichever one is the smallest, 
thus forcing to move the maximum number of individ-
uals possible.

This modelling approach assumes that individuals 
are energetically equivalent, that is, they all have the 
same energy demand and cost function, and the same 

C (B,W ,F ) =

m
∑

i = 1

n
∑

j = 1

cijfij

(1)fij ≥ 0 1 ≤ i ≤ m, 1 ≤ j ≤ n

(2)
n
∑

j = 1

fij ≤ kbi 1 ≤ i ≤ m

(3)

m
∑

i = 1

fij ≤ kwj 1 ≤ j ≤ n

(4)
m
∑

i = 1

n
∑

j = 1

fij =min

(

m
∑

i = 1

kbi ,

n
∑

j = 1

kwj

)

F I G U R E  1  The Optimal Redistribution Simulator, ORSIM. The model is structured as a bipartite graph between seasonal grounds. 
Nodes and edges on the graph represent different state variables. Each breeding site bi is characterised by an energy supply kbi that limits the 
number of migratory individuals departing; each wintering site wj is characterised by an energy supply kwj that limits the number of migratory 
individuals it can accommodate; and each edge between a pair of breeding– wintering sites is characterised by the energy cost of relocating 
between these two sites cij. On this graph, ORSIM simulates the processes of minimising energetic costs while considering intraspecific 
competition. It uses a solution to the transportation problem from linear optimisation (see Methods for details) to find the flows fij of migrating 
individuals between each departing site, here bi, and each destination site, here wj. Input data for model calibration include spatiotemporal 
exploratory models (STEMs), which estimate relative abundance using citizen- science data from eBird (Fink et al., 2020b) and were converted 
into values onto a grid of hexagons covering the Americas (see Material and Methods), to calibrate the seasonal distribution of energy supply. 
The energetic costs associated with relocating between seasonal grounds were calibrated using the cost of migratory movement based on the 
distance separating the breeding and wintering sites. The output of the calibrated model is the simulated migratory connectivity that follows an 
ideal optimal redistribution of the species
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competitive ability. Population- level energy demand is, 
therefore, proportional to the number of individuals in 
the population. These individuals are also ideal, that 
is, with perfect knowledge of how energy supply is dis-
tributed in the environment. This assumption of omni-
science about the environment has been used often in 
ecology (e.g. the ideal free distribution is a classic model; 
Fretwell & Lucas, 1970) and in migration modelling 
(Bauer & Klaassen, 2013; Revell & Somveille, 2017). In 
our model, since energy supply is entirely used by the 
individuals exploiting it (see constraints in the model 
formulation) and all individuals are identical and gain 
identical shares of the energy supply, then, similarly to 
the Ideal Free Distribution (Fretwell & Lucas, 1970), the 
predicted distribution of individuals at each season is 
proportional to the amount of energy available. Thus, 
the constraints in the model implicitly consider the com-
petitive equilibrium expected under the IFD when min-
imising energy cost associated with seasonal relocation. 
Migratory connectivity is then predicted by the model as 
the pattern of inter- seasonal flow of migrating individu-
als (Figure 1).

A solution to the transportation problem from lin-
ear optimisation is implemented in the Earth Mover's 
Distance (EMD) algorithm (Rubner et al., 2000), which 
uses the transportation- simplex method (Hillier & 
Lieberman, 1990). To simulate migratory connectivity, 
we used the FastEMD algorithm (Pele & Werman, 2008, 
2009), which is implemented in the Python wrapper 
PyEMD. No distance threshold was used when running 
FastEMD.

Model calibration

To calibrate the seasonal distribution of energy supply 
when applying ORSIM to avian species, we used predic-
tions from spatiotemporal exploratory models (STEMs) 
that estimate species distribution and abundance across 
continental extents and throughout the full annual cycle 
(Fink et al., 2020b). We assume that the distribution of 
relative abundance predicted by STEMs, which corre-
lates bird observation data and information on habitat 
quality, reflects the distribution of energy available to the 
species across their seasonal ranges (Figure 1). STEMs 
are based on observation data from eBird citizen- science 
program (Sullivan et al., 2014), which has a particu-
larly good survey completeness in North and Central 
America (La Sorte & Somveille, 2020) where most of the 
species analysed here are located (Figure S1). STEMs 
use land cover descriptors from remote- sensing data to 
capture associations of birds with a variety of habitat 
and topography across continents, and it accounts for 
biases (1) due to heterogeneous and imperfect observa-
tion processes and (2) in the spatiotemporal distribution 
of survey effort (Fink et al., 2020b). Estimates of relative 
abundance for the breeding and wintering seasons were 

obtained from eBird Status and Trends products (Fink 
et al., 2020a), and were downloaded through the R pack-
age ebirdst.

We aggregated relative abundance estimates within 
equal- area hexagons (ISEA3H resolution 7; hexagons 
centres separated by ~165 km) of a hexagon grid cover-
ing the Americas (Sahr et al., 2003). For each hexagon, 
we obtained an estimate of relative abundance by aver-
aging the relative abundance values (i.e. pixels in the ras-
ter) contained in that hexagon. For each season, we then 
standardised the relative abundance distribution across 
the entire hexagon grid so that its total sum is equal to 
1. Thereafter, we consider the breeding sites of a given 
species to be the hexagons in the grid for which relative 
abundance of that species during the breeding season is 
greater than 0, and wintering sites to be the hexagons for 
which relative abundance of that species during the win-
tering season is greater than 0. Note that a hexagon can 
be both a breeding and a wintering site for a given species.

To calibrate the energetic cost associated with relo-
cating between breeding and wintering grounds, we used 
migration distance, as the cost of migratory movement 
has been shown to be a key factor influencing migratory 
behaviour (Alerstam, 2011; Amélineau et al., 2018; Flack 
et al., 2016; Norevik et al., 2020). We assume that individu-
als migrate along the shortest path between breeding and 
wintering sites. This assumption has been used in previ-
ous studies investigating the factors explaining migratory 
destinations at species level (Somveille et al., 2018, 2019). 
In addition, we assume that the cost of migration is a lin-
ear function of the length of the migratory path, which is 
supported by empirical results obtained by Wikelski et al., 
(2003), showing a linear relationship between flight dura-
tion and energy expenditure, under the assumption that 
birds fly at a relatively constant cruise speed.

Model validation

To validate predictions from ORSIM, we assessed the 
extent to which the predicted migratory connectivity 
captures empirical patterns. We mapped empirical mi-
gratory connectivity for 25  species of North American 
migratory birds (i.e. species for which the breeding 
distribution is mostly in North America and the win-
tering distribution can be located anywhere across the 
Americas; Table 1, Figure S1), belonging to 13 different 
avian families. These species have a wide range of mi-
gration patterns (Figure S1), including short- distance 
migrants (e.g. Brown Thrasher), long- distance migrants 
(e.g. Swainson's Thrush) and partial migrants (e.g. Red- 
winged Blackbird), as well as a wide distribution of 
range size, including restricted range species (e.g. Blue- 
winged Warbler) and widespread species (e.g. American 
Kestrel). These species were selected because estimates 
of relative abundance from eBird data were available 
for model calibration and sufficient individual- level 
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migration data were available (i.e. 10 or more individu-
als; Table 1) from multiple sites across the species’ distri-
bution. For these species, we obtained data on migratory 
movement for a total of 7145 individuals from three 
sources: (a) banding recoveries, (b) tracking data and (c) 
genetic data. These different data types were pooled to-
gether to map empirical migratory connectivity. Details 
regarding how we obtained and processed the validation 
data sets are available in the model validation section in 
Supplementary Material. Information regarding data 
types and number of individuals available for each spe-
cies is shown in Table 1.

To quantify the extent to which ORSIM captures em-
pirical migratory connectivity, we computed the Mantel 
correlation coefficient (rM; Mantel, 1967) between the 
matrix of empirical distances between migration start 
and end points and the matrix of equivalent distances 
simulated by ORSIM. This validation metric (rM) varies 
between −1 and 1, with 1 being a perfect positive cor-
relation between the empirical and simulated geograph-
ical distributions of migration destinations (Fig. S3), 
and 0 corresponding to no association. This measure is 

sensitive to both the distance and direction of simulated 
migrations (Fig. S4). A full description of the validation 
procedure is available in the model validation section in 
Supplementary Material.

We also estimated the strength of migratory con-
nectivity (MC) by computing the Mantel correlation 
coefficient between the matrices of breeding distances 
(i.e. pairwise distances between the sets of breeding 
grounds) and wintering distances (i.e. pairwise dis-
tances between the sets of wintering grounds) for both 
the empirical data set and the ORSIM simulations 
(see Supplementary Material for details). MC var-
ies between −1 and 1, with 1 being a perfect positive 
correlation between the distributions of breeding and 
wintering sites, thus indicating the strongest migratory 
connectivity possible.

Null models

To investigate the contribution of the two key pro-
cesses, that is, minimising the energetic cost of seasonal 

TA B L E  1  Empirical data on individual- level migratory movements

Species
Banding data  
(# individuals)

Tracking data
(# individuals)

Genetic data  
(# individuals)

Total # 
individuals

Wood Thrush 7 102 – 102

Swainson's Thrush 3 35 – 22

Hermit Thrush 7 5 – 10

American Robin 928 – – 872

Red- winged Blackbird 528 – – 482

Yellow Warbler – – 186 178

Common Yellowthroat – – 96 91

Wilson's Warbler – – 241 232

Blue- winged Warbler – 25 – 17

Ovenbird 5 52 – 53

Willow Flycatcher – – 334 261

Grasshopper Sparrow – 33 – 15

White- throated Sparrow 24 – – 19

American Goldfinch 238 – – 211

Purple Finch 404 – – 358

Common Loon 149 – – 82

Brown Thrasher 106 – – 94

Gray Catbird 42 6 – 29

Brown- headed Cowbird 595 – – 530

Common Grackle 2843 – – 2737

Tree Swallow 25 – – 19

Barn Swallow 3 25 – 26

American Kestrel 317 – – 278

Burrowing Owl 32 – – 14

Osprey 698 71 – 413

For each species included in the analysis, this table shows the number of individuals for which data were obtained from the different sources as well as the total 
number of individuals used in the analysis after removing data falling outside the relative abundance distribution of species.
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relocation and intraspecific competition, in ORSIM’s 
performance, we assessed whether the model performed 
better than three different null models at capturing the 
empirical migratory connectivity.

Null model 1: The null expectation for migratory con-
nectivity is obtained by randomising migratory destina-
tions, that is, randomly pairing breeding and wintering 
sites across the seasonal distributions of species. This 
model nullifies both key processes in ORSIM, that is, 
competition for energy acquisition and minimising the 
energetic cost of seasonal relocation. It thus corresponds 
to individuals migrating completely freely without any 
constraint other than spending the winter within the spe-
cies’ wintering range.

Null model 2: The null expectation for migratory con-
nectivity is obtained by selecting migratory destinations 
solely based on minimising the energetic cost of seasonal 
relocation. For a given breeding site b, a migratory con-
nection is obtained by sampling a wintering site w within 
the set of sites across the wintering distribution (W) with 
probability Pw =

�

cbw
�−1

∕
∑

W
i=1

�

cbi
�−1

, with c the ener-
getic cost of seasonal relocation, which is here estimated 
using the great circle distance separating a breeding site 
and wintering site. This model nullifies one of the key 
processes in ORSIM, that is, competition for energy ac-
quisition, while keeping the other key process, that is, mi-
nimising the energetic cost of seasonal relocation, at play.

Null model 3: The null expectation for migratory con-
nectivity is obtained by selecting migratory destinations 
solely based on the competitive equilibrium for energy 
acquisition. For a given breeding site b, a migratory con-
nection is obtained by sampling a wintering site w within 
the set of sites across the wintering distribution (W) with 
probability Pw = kw∕

∑

W
i=1

ki, with k the energy available 
in a wintering site. This model nullifies one of the key pro-
cesses in ORSIM, that is, minimising the energetic cost of 
seasonal relocation, while keeping the other key process, 
that is, competition for energy acquisition, at play.

We ran each null model 1000 times and each time we 
followed the same validation procedure described in 
the model validation section in Supplementary Material 
to obtain a Mantel correlation coefficient (rM) between 
the matrices of empirical distances and distances simu-
lated by the null model. To assess statistical significance, 
we investigated whether ORSIM is performing better 
than each null model by comparing rM values and as-
sessing whether the rM of ORSIM is higher than 95% of 
the rM of the null model. We also measured effect size 
as E = rM

ORSIM −mean(rM
NULL), where rM

ORSIM is the 
validation metric (Mantel correlation) for ORSIM and 
rM

NULL is the set of Mantel correlations for null models.

RESU LTS

ORSIM, which is based on basic ecological processes –  
integrating the energetic cost associated with relocating 

between seasonal grounds and intraspecific competition 
for access to energy supply –  is able to capture very well 
empirical migratory connectivity patterns (mean Mantel 
correlation coefficient: rM  =  0.721  ±  0.156; Table S1; 
Figures 2, 3a and S5– S9). These results were not affected 
by data type (i.e. whether empirical data are from elec-
tronic tracking, banding recoveries or high- resolution 
genetic markers; one- way ANOVA: F = 0.576, p = 0.57), 
or sample size (i.e. number of individuals included for 
mapping a species’ migratory connectivity; Table 1; lin-
ear regression: t = 0.157, p = 0.877), or range size (breeding 
range: linear regression t = −0.586, p = 0.564; wintering 
range: t = −0.904, p = 0.376; seasonal difference in range 
size: t = −0.626, p = 0.537), or the degree of partial mi-
gration (i.e. seasonal range overlap; linear regression: 
t = −0.215, p = 0.832).

The strength of migratory connectivity in the empir-
ical data sets varies greatly among species (Figure 3c), 
with some species exhibiting strong migratory con-
nectivity, such as Red- winged Blackbird (empirical 
MC = 0.843; based on banding data), Barn Swallow (em-
pirical MC =0.782; mostly based on tracking data) and 
Common Yellowthroat (empirical MC = 0.742; based on 
genetic data), while other species exhibit weak migra-
tory connectivity, such as Blue- winged Warbler (empir-
ical MC = −0.027; based on tracking data) and Wilson's 
Warbler (empirical MC = 0.159; based on genetic data). 
ORSIM is able to broadly capture this variation by sim-
ulating values for the strength of migratory connectiv-
ity that correlate with the empirical values (r  =  0.708, 
p  <  0.001; Figure 3c). However, ORSIM is generating 
strengths of migratory connectivity that are consis-
tently higher than the empirical values (mean empirical 
MC = 0.555; mean simulated MC = 0.776; simulated MC 
is higher than empirical MC for 23 out of 25 species). In 
addition, we found no correlation between the strength 
of empirical migratory connectivity and the validation 
metric (rM) assessing ORSIM’s performance at captur-
ing the empirical patterns (linear regression t  =  0.406, 
p  =  0.689), thus indicating that ORSIM’s good perfor-
mance is not biased towards species with strong or weak 
migratory connectivity.

ORSIM was able to capture migratory connectivity 
patterns better than null models, with effect sizes gen-
erally high (Figure 3b): null model 1 has median effect 
size = 0.529; null model 2 has median effect size = 0.915 
and null model 3 has median effect size = 0.364. ORSIM 
performed significantly better than the null model ran-
domising migratory destinations (null model 1) for 23 out 
of 25 species (except for Gray Catbird and Grasshopper 
Sparrow; Table S1), and the null model selecting migra-
tory destinations solely based on minimising the ener-
getic cost of seasonal relocation (null model 2) for all 
species (Table S1). When compared to the null model 
selecting migratory destinations solely based on com-
petition for energy acquisition (null model 3), ORSIM 
performed significantly better for most species (80% 
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of species), but not for Wood Thrush, Blue- winged 
Warbler, Tree Swallow and, as for the fully randomised 
null model, Gray Catbird and Grasshopper Sparrow 
(Table S1). After removing validation data located 
in the top quartile of abundance values (see details in 
Supplementary Material), analyses showed similar re-
sults, with ORSIM being able to capture well empirical 
migratory connectivity patterns (mean Mantel correla-
tion coefficient: rM  =  0.702  ±  0.161; Table S2) and per-
forming significantly better than the null models (except 
only for ovenbird against null model 3; Table S2). Thus, 
the bias of validation data towards high abundance area 
(see Supplementary Material) does not appear to have 

a significant effect on the results. Overall, these results 
indicate that the key processes included in ORSIM, that 
is, minimising energetic cost associated with seasonal re-
location and intraspecific competition for access to en-
ergy supply, are both strongly contributing to the good 
performance of the model.

DISCUSSION

The modelling framework that we present is based on 
general principles of energetics and ecology and it can be 
used to predict the migratory connectivity of any animal 

F I G U R E  2  ORSIM is capturing empirical migratory connectivity patterns. Three species are presented here: (a– c) Ovenbird, Seiurus 
aurocapilla, for which the empirical pattern was mapped using mostly tracking data; (d– f) Purple Finch, Haemorhous purpureus, for which the 
empirical pattern was mapped using banding data and (g– i) Yellow Warbler, Setophaga petechia, for which the empirical pattern was mapped 
using genetic data. For each species, the empirical migratory connectivity (using empirical data; a, d and g) and the simulated migratory 
connectivity (from ORSIM; b, e and h) are mapped. On the maps, in orange is the breeding distribution and in blue is the wintering distribution. 
Plots of simulated versus empirical (c, f and i) indicate the relationship between empirical and simulated pairwise distances between breeding 
and wintering grounds (see Figure S3), as well as the associated Mantel correlation coefficient (rM). Red lines in (c, f and i) indicate the 1:1 
relationships between empirical and simulated. Bird illustrations reproduced with permission from Lynx Edicions
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species performing seasonal migration. Here, we used 
data on 25 avian species to calibrate and validate the 
model. Our results indicate that individuals within mi-
gratory species tend to follow an ideal optimal redistri-
bution across seasons, and suggest that energy efficiency 
explains much of the intraspecific variation in migratory 
destinations. Following previous work showing that the 
mechanism of energy efficiency explains bird migra-
tion well at the inter- specific level of the entire avifauna 
(Somveille et al., 2018), we show here that it is also able to 
explain this phenomenon at the intraspecific level. Thus, 
in combination with previous work, our results support 
the idea that energy efficiency provides a general expla-
nation for bird migration across scales, from individual 
behaviour to global patterns. Further, these results sup-
port Lotka's maximum power principle (Lotka, 1922), 
which states that natural selection should favour organ-
isms that best optimise energy acquisition from the en-
vironment and energy used for survival to allocate the 
surplus energy to growth and reproduction. Following 
such energetic definition of fitness (Brown et al., 1993), 
our results support the hypothesis that natural selection 
has shaped the behaviour of migratory birds to maxim-
ise net energy gains while competing with each other for 
seasonally available resources.

Our model, which generates patterns expected under 
an ideal optimal redistribution of migratory individuals, 
provides a strong theoretical basis for exploring addi-
tional processes underlying the ecology and evolution of 
migration, particularly since it is based on many simplify-
ing assumptions. In particular, we assume that energetic 
costs associated with relocating between breeding and 
wintering grounds are solely based on migratory move-
ment. However, other factors are likely to be at play, such 
as individual-  and population- level seasonal tracking 
of habitat and climatic conditions (Ramos et al., 2015; 
Ruegg et al., 2021). Integrating climate into ORSIM, in 

particular through an energetic cost of switching climate 
(Somveille et al., 2019) that can be added to the energetic 
cost that is minimised in the model, would allow test-
ing the general role of this mechanism in driving within- 
species migration patterns. In addition, we assume that 
birds migrate along a straight line between breeding and 
wintering sites and that the cost of migratory movement 
is a linear function of the length of this straight line. 
However, birds usually migrate following more com-
plex routes, involving stop- overs and barrier avoidance 
(Cano et al., 2020; Delmore et al., 2012; Irwin & Irwin, 
2005; Norevik et al., 2020; La Sorte et al., 2016), and are 
affected by environmental conditions along the way such 
as wind (Kranstauber et al., 2015; Norevik et al., 2020). 
These, in turn, might affect the energetic cost associated 
with relocating between seasonal grounds and therefore 
impact model predictions.

We also assume in our model that birds are ideal, 
that is, with complete knowledge of the environment, 
and free to choose the optimal migratory destinations. 
This assumption greatly simplifies the model, and it can 
be equivalent to assuming that over time (across many 
generations) birds will converge towards the optimal be-
haviour via natural selection, thus mimicking full knowl-
edge of the environment while assuming the large- scale 
environment has been stable for long enough for natural 
selection to fully optimise. However, in reality, individu-
als are more likely to have restricted information about 
the quality of the environment at a large scale, and in-
formation about where to migrate is instead partially 
coded in genes (Liedvogel et al., 2011) and/or transferred 
culturally (Harrison et al., 2010). Consequently, migra-
tion patterns might deviate from optimality as they are 
in part shaped by historical legacy of how populations 
have shifted their distributions in response to past cli-
mate change (Ruegg & Smith, 2002; Winger et al., 2019). 
Integrating restrictions on knowledge of the environment 

F I G U R E  3  Energy efficiency drives the seasonal redistribution of individuals within migratory species. (a) Density plot of the validation 
metric (rM) for the 25 species investigated; rM varies between −1 and 1, with 1 being a perfect positive correlation between the empirical and 
simulated migration patterns (Figure S3), and 0 corresponding to no association. (b) Density plots of the effect sizes when comparing ORSIM 
to null models for the 25 species investigated; effect size was calculated as rM

ORSIM − mean(rM
NULL) and positive values indicate that ORSIM 

tend to perform well at capturing empirical migratory connectivity when compared to the null models. (c) Relationship between the strength of 
migratory connectivity (MC) simulated by ORSIM and calculated from empirical data
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and heritable information about migratory behaviour 
into our modelling framework could, therefore, poten-
tially help explain why some species in our analysis could 
not be well explained by ORSIM (Table S1) and yield 
new insights into the evolution of migration. For exam-
ple, the serial residency hypothesis (Cresswell, 2014), 
which is based on differential survival of juveniles that 
are exploring different migration destinations, could be 
implemented in future development of our modelling 
framework to test it. It must also be noted that ORSIM 
is a deterministic model that does not consider the sto-
chasticity inherent to seasonal destinations of migratory 
individuals. This could explain why the model currently 
overestimates the strength of migratory connectivity for 
example. Implementing a stochastic version of ORSIM 
would be another valuable future development of the 
model, and we expect that it would generate values for 
the strength of migratory connectivity that are more in 
line with the empirical ones.

Specific mismatches between model predictions and 
empirical patterns are apparent, and such differences 
highlight important areas for future research. In partic-
ular, ORSIM is highly efficient at capturing longitudinal 
patterns of migratory connectivity (Table S3), but less 
so at capturing latitudinal patterns (Table S4), indicat-
ing that additional processes are important for driving 
how individuals redistribute latitudinally. For example, 
life- history strategies have been shown to influence dif-
ferential migration in birds (Gow & Wiebe, 2014), and 
intraspecific trait variation that affect climate tolerance 
could affect the energetic cost associated with relocating 
between seasonal sites. We expect that adding traits re-
lated to migratory performance and climate tolerance, 
but also competitive ability, such as age and size, as well 
as taking into account environmental factors en route, 
such as wind and barriers, will improve the ability of the 
model to capture latitudinal patterns, and better explain 
migratory patterns more generally.

The explanatory capacity of ORSIM is tied to the 
data sets used to calibrate and validate it. For calibra-
tion, we used here seasonal relative abundance predicted 
by STEMs, which correlate eBird data and information 
on habitat quality, to estimate the distribution of energy 
available to the species across their seasonal ranges. 
However, other types of data could be used for species 
for which STEMs are not available, such as using prox-
ies for resource availability for these species. To validate 
model predictions, we used a combination of banding, 
tracking and genetic data. These data sets have specific 
biases, such as a bias towards areas of high human den-
sity for band retrieval or variable accuracy for the breed-
ing destinations with genetic data and for the wintering 
destinations with tacking data. However, we found no 
effect of data type on the validation results of ORSIM, 
thus suggesting that sampling biases might not be a sig-
nificant problem for our validation analysis. In addition, 
while we selected data sets with at least 10 individuals 

available per species, some species still have a rela-
tively small amount of data points (e.g. Hermit Thrush, 
Burrowing Owl; Table 1). This is a limitation because 
these smaller data sets might not cover a wide range of 
migration strategies, and using small data sets hinders 
the power of comparing ORSIM predictions to null 
models. However, we found that the validation results 
were not affected by sample size, which indicates that 
the data sets that we used were not inadequately small. It 
would still be important and useful to expand these data 
sets, particularly obtaining migration data from indi-
viduals located in informative locations (i.e. areas of the 
range currently lacking data; areas where individuals are 
expected to use several different migration strategies), to 
confirm the results obtained in this study.

Our model provides, for the first time, quantita-
tive predictions of migratory connectivity based on 
first ecological and energetic principles. The strong 
predictive ability for populations with empirical data 
suggests that ORSIM could be used for mapping the 
migration patterns of populations for which move-
ment data are not yet available. Thus, further test of 
the modelling framework could be done by collecting 
data from new sites across species’ seasonal ranges for 
which ORSIM’s prediction is not what would be ex-
pected based on other models or current knowledge, 
which could be particularly useful for local popula-
tions undergoing rapid decline. Through manipulating 
the distribution of energy in the environment, ORSIM 
predictions could also inform how migratory net-
works respond to environmental change, particularly 
habitat loss, and ultimately how this affects popula-
tion dynamics (Dolman & Sutherland, 1994; Taylor & 
Norris, 2010; Taylor & Stutchbury, 2016). In addition, 
our modelling framework can predict the behaviour of 
sedentary individuals within partially migratory spe-
cies, and therefore it could be applied to species with 
validation data sets that include both migrant and sed-
entary individuals to predict patterns of partial migra-
tion and better understand this phenomenon. Overall, 
our finding that migratory birds tend to follow an ideal 
optimal redistribution between seasons opens the door 
for a better understanding of the evolutionary causes 
and consequences of migration patterns as well as a 
strong framework for understanding how seasonal mi-
grations may change amidst future rapid environmen-
tal change.
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